
CA-ADS®
Reference

15.0

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is
for the end user's informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

This documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part,
without the prior written consent of CA. This documentation is proprietary information of CA and protected by
the copyright laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this documentation for
their own internal use, provided that all CA copyright notices and legends are affixed to each reproduced copy.
Only authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of
the license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force
and effect. Should the license terminate for any reason, it shall be the user's responsibility to return to CA the
reproduced copies or to certify to CA that same have been destroyed.

To the extent permitted by applicable law, CA provides this documentation “as is” without warranty of any kind,
including without limitation, any implied warranties of merchantability, fitness for a particular purpose or
noninfringement. In no event will CA be liable to the end user or any third party for any loss or damage, direct
or indirect, from the use of this documentation, including without limitation, lost profits, business interruption,
goodwill, or lost data, even if CA is expressly advised of such loss or damage.

The use of any product referenced in this documentation and this documentation is governed by the end user's
applicable license agreement.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1)
and (2) or DFARS Section 252.227-7013(c)(1)(ii) or applicable successor provisions.

Second Edition, October 2001

 2001 Computer Associates International, Inc.
All rights reserved.

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

 Contents

How to Use This Manual . xiii

Volume 1. CA-ADS Reference

Chapter 1. Introduction to CA-ADS . 1-1
1.1 What is CA-ADS? . 1-3
1.2 What CA-ADS does . 1-4
1.3 Creating a CA-ADS application . 1-5
1.4 Tools used to develop an application . 1-7

1.4.1 The CA-ADS application compiler (ADSA) 1-7
1.4.2 Mapping facilities (MAPC and the Batch Compiler/Utility) 1-9
1.4.3 CA-ADS dialog compilers (ADSC and ADSOBCOM) 1-10
1.4.4 IDD menu facility and online IDD 1-12
1.4.5 The CA-ADS runtime system . 1-13

1.5 CA-ADS screens . 1-14
1.5.1 Action bar . 1-15
1.5.2 Action bar actions . 1-17

1.6 Checkout and release procedures . 1-28
1.6.1 How to check out or release an entity 1-28
1.6.2 Listing checkouts (ADSL) . 1-30
1.6.3 Modifying checkouts (ADSM) . 1-31

1.7 CA-ADS help facility . 1-32

Chapter 2. CA-ADS Application Compiler (ADSA) 2-1
2.1 Overview . 2-3
2.2 Application compiler session . 2-4

2.2.1 Invoking the application compiler . 2-4
2.2.2 Sequencing through application compiler screens 2-7
2.2.3 Suspending a session . 2-10
2.2.4 Terminating a session . 2-10

2.3 Application compiler screens . 2-11
2.3.1 Main menu . 2-11
2.3.2 General Options screen—Page 1 . 2-14
2.3.3 General Options screen—Page 2 . 2-16
2.3.4 Response/Function List screen . 2-19
2.3.5 Response Definition screen . 2-23
2.3.6 Function Definition (Dialog) screen 2-27
2.3.7 Function Definition (Program) screen 2-30
2.3.8 Function Definition (Menu) screen 2-32
2.3.9 Global Records screen . 2-37
2.3.10 Task Codes screen . 2-39

Chapter 3. CA-ADS Dialog Compiler (ADSC) 3-1
3.1 Overview . 3-3
3.2 Dialog compiler session . 3-4

3.2.1 Invoking the dialog compiler . 3-4

Contents iii

3.2.2 Sequencing through dialog compiler screens 3-5
3.2.3 Suspending a session . 3-8
3.2.4 Terminating a session . 3-9

3.3 Dialog compiler screens . 3-10
3.3.1 Main menu . 3-10
3.3.2 Options and Directives screen . 3-13
3.3.3 Map Specifications screen . 3-17
3.3.4 Database Specifications screen . 3-20
3.3.5 Records and Tables screen . 3-23
3.3.6 Process Modules screen . 3-25

Chapter 4. CA-ADS Runtime System . 4-1
4.1 Initiating the CA-ADS runtime system . 4-3

4.1.1 How to define runtime tasks . 4-3
4.1.2 How to start a CA-ADS application . 4-4

4.2 Runtime menu and help screens . 4-8
4.2.1 Menu screens . 4-8
4.2.2 Site-defined menu maps . 4-9
4.2.3 System-defined menu maps . 4-10
4.2.4 Application help screen . 4-16

4.3 Runtime flow of control . 4-19
4.3.1 Effects of automatic editing on flow of control 4-22

4.4 Message prefixes . 4-23
4.5 CA-ADS tasks, run units, and transactions 4-24

4.5.1 Run units and database access . 4-25
4.5.2 Extended run units . 4-25

4.6 Dialog Abort Information screen . 4-28
4.7 Debugging a dialog . 4-32
4.8 Linking From CA-ADS to CA-OLQ . 4-33

4.8.1 Linking to CA-OLQ . 4-33
4.8.2 Passing syntax to CA-OLQ . 4-33

4.9 Linking built-in functions with the runtime system 4-34
4.9.1 Linking system-supplied built-in functions 4-34
4.9.2 Linking user-written built-in functions 4-39

4.10 Managing storage . 4-40
4.10.1 Adjusting record compression . 4-40
4.10.2 Calculating RBB storage . 4-40
4.10.3 Writing resources to scratch records 4-41
4.10.4 Using XA storage . 4-42

Chapter 5. Introduction to Process Language 5-1
5.1 Overview . 5-3
5.2 Process modules . 5-5

5.2.1 Creating process modules . 5-5
5.2.2 Adding process modules to dialogs . 5-5
5.2.3 Executing process modules . 5-5

5.3 Process commands . 5-7
5.3.1 Constructing commands . 5-7
5.3.2 Coding considerations . 5-8

5.4 Data types . 5-10
5.4.1 Conversion between data types . 5-16

iv CA-ADS Reference

Chapter 6. Arithmetic Expressions . 6-1
6.1 Overview . 6-3
6.2 Syntax . 6-4
6.3 Evaluation of arithmetic expressions . 6-5
6.4 Coding considerations . 6-6

Chapter 7. Built-in Functions . 7-1
7.1 Overview . 7-3

7.1.1 Invocation names . 7-3
7.1.2 Built-in function values . 7-4
7.1.3 Coding parameters . 7-4

7.2 User-defined built-in functions . 7-5
7.3 System-supplied functions . 7-6

7.3.1 Arithmetic functions . 7-6
7.3.2 Date functions . 7-6
7.3.3 String functions . 7-7
7.3.4 Trailing-sign functions . 7-8
7.3.5 Trigonometric functions . 7-9

7.4 ABSOLUTE-VALUE . 7-11
7.5 ARC COSINE . 7-12
7.6 ARC SINE . 7-13
7.7 ARC TANGENT . 7-14
7.8 CONCATENATE . 7-15
7.9 COSINE . 7-16
7.10 DATECHG . 7-17
7.11 DATEDIF . 7-20
7.12 DATEOFF . 7-21
7.13 EXTRACT . 7-23
7.14 FIX . 7-24
7.15 GOODDATE . 7-25
7.16 GOODTRAILING . 7-26
7.17 INITCAP . 7-27
7.18 INSERT . 7-28
7.19 INVERT-SIGN . 7-30
7.20 LEFT-JUSTIFY . 7-31
7.21 LIKE . 7-32
7.22 LOGARITHM . 7-34
7.23 MODULO . 7-35
7.24 NEXT-INT-EQHI . 7-36
7.25 NEXT-INT-EQLO . 7-37
7.26 NUMERIC . 7-38
7.27 RANDOM-NUMBER . 7-40
7.28 REPLACE . 7-42
7.29 RIGHT-JUSTIFY . 7-44
7.30 SIGN-VALUE . 7-45
7.31 SINE . 7-46
7.32 SQUARE-ROOT . 7-47
7.33 STRING-INDEX . 7-48
7.34 STRING-LENGTH . 7-49
7.35 STRING-REPEAT . 7-50

Contents v

7.36 SUBSTRING . 7-51
7.37 TANGENT . 7-53
7.38 TODAY . 7-54
7.39 TOLOWER . 7-55
7.40 TOMORROW . 7-56
7.41 TOUPPER . 7-57
7.42 TRAILING-TO-ZONED . 7-58
7.43 TRANSLATE . 7-59
7.44 VERIFY . 7-61
7.45 WEEKDAY . 7-62
7.46 WORDCAP . 7-65
7.47 YESTERDAY . 7-66
7.48 ZONED-TO-TRAILING . 7-67

Chapter 8. Conditional Expressions . 8-1
8.1 Overview . 8-3
8.2 General considerations . 8-4

8.2.1 Syntax for conditional expressions . 8-4
8.3 Batch-control event condition . 8-6
8.4 Command status condition . 8-7
8.5 Comparison condition . 8-10
8.6 Cursor position condition . 8-12
8.7 Dialog execution status condition . 8-14
8.8 Environment status condition . 8-16
8.9 Level-88 condition . 8-17
8.10 Map field status condition . 8-18
8.11 Map paging status conditions . 8-22
8.12 Set status condition . 8-25
8.13 Arithmetic and assignment command status condition 8-27

Chapter 9. Constants . 9-1
9.1 Overview . 9-3
9.2 Figurative constants . 9-4
9.3 Graphic literals . 9-6
9.4 Multibit binary constants . 9-7
9.5 Nonnumeric literals . 9-8
9.6 Numeric literals . 9-9

Chapter 10. Error Handling . 10-1
10.1 Overview . 10-3
10.2 The autostatus facility . 10-4
10.3 Error expressions . 10-6
10.4 The ALLOWING clause . 10-7
10.5 Status definition records . 10-9

Chapter 11. Variable Data Fields . 11-1
11.1 Overview . 11-3
11.2 User-defined data field names . 11-4
11.3 System-supplied data field names . 11-6
11.4 Entity names . 11-12

vi CA-ADS Reference

Chapter 12. Introduction to Process Commands 12-1
12.1 Overview . 12-3
12.2 Summary of process commands . 12-4
12.3 INCLUDE . 12-8

Chapter 13. Arithmetic and Assignment Commands 13-1
13.1 Overview . 13-3
13.2 General considerations . 13-4

13.2.1 Numeric fields . 13-4
13.2.2 EBCDIC and DBCS fields . 13-4
13.2.3 Arithmetic and assignment command status condition 13-5

13.3 Arithmetic commands . 13-6
13.3.1 ADD . 13-6
13.3.2 COMPUTE . 13-7
13.3.3 DIVIDE . 13-8
13.3.4 MULTIPLY . 13-10
13.3.5 SUBTRACT . 13-11

13.4 Assignment command . 13-13
13.4.1 MOVE . 13-14

Chapter 14. Conditional Commands . 14-1
14.1 Overview . 14-3
14.2 EXIT . 14-4
14.3 IF . 14-5
14.4 NEXT . 14-8
14.5 WHILE . 14-10

Volume 2. CA-ADS Reference

Chapter 15. Control Commands . 15-1
15.1 Overview . 15-3
15.2 General considerations . 15-5

15.2.1 Application thread . 15-5
15.2.2 Operative and nonoperative dialogs 15-6
15.2.3 Application levels . 15-6
15.2.4 Mainline dialog . 15-6
15.2.5 The menu stack . 15-7
15.2.6 Database currencies . 15-7

15.3 CONTINUE . 15-10
15.4 DISPLAY . 15-12
15.5 EXECUTE NEXT FUNCTION . 15-17
15.6 INVOKE . 15-19
15.7 LEAVE . 15-22
15.8 LINK . 15-24
15.9 READ TRANSACTION . 15-30
15.10 RETURN . 15-31
15.11 TRANSFER . 15-34
15.12 WRITE TRANSACTION . 15-36

Contents vii

Chapter 16. Database Access Commands 16-1
16.1 Overview . 16-3
16.2 Navigational DML . 16-5

16.2.1 Overview of navigational database access 16-5
16.2.2 Use of native VSAM data sets . 16-7
16.2.3 Record locking . 16-9
16.2.4 Suppression of record retrieval locks 16-10
16.2.5 Overview of ACCEPT . 16-12
16.2.6 ACCEPT DB-KEY FROM CURRENCY 16-12
16.2.7 ACCEPT DB-KEY RELATIVE TO CURRENCY 16-14
16.2.8 ACCEPT PAGE-INFO . 16-16
16.2.9 ACCEPT STATISTICS . 16-17
16.2.10 BIND PROCEDURE . 16-19
16.2.11 COMMIT . 16-20
16.2.12 CONNECT . 16-22
16.2.13 DISCONNECT . 16-25
16.2.14 ERASE . 16-27
16.2.15 Overview of FIND/OBTAIN . 16-30
16.2.16 FIND/OBTAIN CALC . 16-31
16.2.17 FIND/OBTAIN CURRENT . 16-33
16.2.18 FIND/OBTAIN DB-KEY . 16-34
16.2.19 FIND/OBTAIN OWNER . 16-37
16.2.20 FIND/OBTAIN WITHIN SET/AREA 16-38
16.2.21 FIND/OBTAIN WITHIN SET USING SORT KEY 16-42
16.2.22 GET . 16-44
16.2.23 KEEP . 16-46
16.2.24 KEEP LONGTERM . 16-47
16.2.25 MODIFY . 16-53
16.2.26 READY . 16-55
16.2.27 RETURN DB-KEY . 16-57
16.2.28 ROLLBACK . 16-59
16.2.29 STORE . 16-60

16.3 Logical Record Facility commands . 16-64
16.3.1 Overview of LRF database access 16-64
16.3.2 WHERE clause . 16-65
16.3.3 Conditional expression . 16-65
16.3.4 Comparison expression . 16-66
16.3.5 ERASE . 16-68
16.3.6 MODIFY . 16-69
16.3.7 OBTAIN . 16-70
16.3.8 ON command . 16-71
16.3.9 STORE . 16-75

Chapter 17. Map Commands . 17-1
17.1 Overview . 17-3
17.2 Map modification commands . 17-4
17.3 Attributes Command . 17-5
17.4 CLOSE . 17-10
17.5 MODIFY MAP . 17-12
17.6 Pageable maps . 17-21

17.6.1 Areas of a pageable map . 17-21

viii CA-ADS Reference

17.6.2 Map paging session . 17-22
17.6.3 Map paging dialog options . 17-27
17.6.4 GET DETAIL . 17-28
17.6.5 PUT DETAIL . 17-30
17.6.6 Creating or modifying a detail occurrence of a pageable map 17-32
17.6.7 Specifying a numeric value associated with an occurrence 17-32
17.6.8 Specifying a message to appear in the message field of an

occurrence . 17-32

Chapter 18. Queue and Scratch Management Commands 18-1
18.1 Overview . 18-3
18.2 Queue records . 18-5
18.3 DELETE QUEUE . 18-7
18.4 GET QUEUE . 18-9
18.5 PUT QUEUE . 18-12
18.6 Scratch records . 18-15

18.6.1 CA-ADS usage . 18-15
18.6.2 CA-ADS/Batch considerations . 18-16

18.7 DELETE SCRATCH . 18-17
18.8 GET SCRATCH . 18-19
18.9 PUT SCRATCH . 18-22

Chapter 19. Subroutine Control Commands 19-1
19.1 Overview . 19-3
19.2 CALL . 19-4
19.3 DEFINE . 19-5
19.4 GOBACK . 19-6

Chapter 20. Utility Commands . 20-1
20.1 Overview . 20-3
20.2 ABORT . 20-4
20.3 ACCEPT . 20-8
20.4 INITIALIZE RECORDS . 20-10
20.5 SNAP . 20-11
20.6 TRACE . 20-13
20.7 WRITE PRINTER . 20-14
20.8 WRITE TO LOG/OPERATOR . 20-18

Chapter 21. Cooperative Processing Commands 21-1
21.1 Using SEND/RECEIVE commands . 21-3

21.1.1 How cooperative processing works 21-3
21.2 Sample cooperative application . 21-4

21.2.1 Program A: Client listing (PC) . 21-5
21.2.2 Dialog B: Server listing (Mainframe) 21-7

21.3 SEND/RECEIVE commands . 21-9
21.4 ALLOCATE . 21-10
21.5 CONFIRM . 21-13
21.6 CONFIRMED . 21-14
21.7 CONTROL SESSION . 21-15
21.8 DEALLOCATE . 21-17

Contents ix

21.9 PREPARE-TO-RECEIVE . 21-19
21.10 RECEIVE-AND-WAIT . 21-20
21.11 REQUEST-TO-SEND . 21-21
21.12 SEND-DATA . 21-22
21.13 SEND-ERROR . 21-24
21.14 Design guidelines . 21-25
21.15 Understanding conversation states . 21-26

21.15.1 Conversation states in a successful data transfer 21-28
21.16 Testing APPC status codes and system fields 21-30

21.16.1 Status codes . 21-30
21.16.2 System fields . 21-30
21.16.3 When APPC status codes and system field values are returned . . 21-30
21.16.4 APPCCODE and APPCERC . 21-31
21.16.5 System fields . 21-34

Chapter 22. OSCaR Commands . 22-1
22.1 OSCaR command syntax . 22-4

22.1.1 OPEN . 22-4
22.1.2 SEND . 22-5
22.1.3 CLOSE . 22-6
22.1.4 RECEIVE . 22-6

22.2 Sample OSCaR application . 22-7
22.3 OSCaR to APPC Mapping . 22-9

Appendix A. System Records . A-1
A.1 Overview . A-3
A.2 ADSO-APPLICATION-GLOBAL-RECORD A-4
A.3 ADSO-APPLICATION-MENU-RECORD A-15

Appendix B. CA-ADS Dialog and Application Reporter B-1
B.1 Overview . B-3
B.2 Dialog reports . B-4
B.3 Application reports . B-15
B.4 Control statements . B-16

B.4.1 APPLICATIONS . B-16
B.4.2 DIALOGS . B-18
B.4.3 LIST . B-21
B.4.4 SEARCH . B-22

B.5 SYSIDMS parameter file . B-24
B.6 JCL and commands to run reports . B-25

Appendix C. Dialog Statistics . C-1
C.1 Overview . C-3
C.2 Collecting selected statistics . C-4
C.3 Enabling dialog statistics . C-8
C.4 Selecting dialogs . C-9
C.5 Setting a checkpoint interval . C-10
C.6 Collecting and writing statistics . C-11
C.7 Statistics reporting . C-12

Appendix D. Application and Dialog Utilities D-1

x CA-ADS Reference

D.1 Overview . D-3
D.2 ADSOBCOM . D-4

D.2.1 Standard control statements . D-4
D.2.2 Special control statements . D-5
D.2.3 SIGNON . D-5
D.2.4 COMPILE . D-6
D.2.5 DECOMPILE . D-8
D.2.6 Dialog-expression . D-10
D.2.7 JCL and commands . D-30

D.2.7.1 OS/390 JCL . D-30
D.2.7.2 VSE/ESA JCL . D-31
D.2.7.3 VM/ESA commands . D-33
D.2.7.4 BS2000/OSD JCL . D-35

D.3 ADSOBSYS . D-37
D.3.1 Control statements . D-37
D.3.2 SYSTEM statement . D-38
D.3.3 JCL and commands . D-39

D.3.3.1 OS/390 JCL . D-39
D.3.3.2 VSE/ESA JCL . D-42
D.3.3.3 VM/ESA commands . D-44
D.3.3.4 BS2000/OSD JCL . D-46

D.4 ADSOBTAT . D-48
D.4.1 Control statements . D-49
D.4.2 JCL and commands . D-51

D.4.2.1 OS/390 JCL . D-51
D.4.2.2 VSE/ESA JCL . D-52
D.4.2.3 VM/ESA commands . D-54
D.4.2.4 BS2000/OSD JCL . D-55

D.5 ADSOTATU . D-57
D.5.1 TAT update utility screen . D-58

Appendix E. Activity Logging for a CA-ADS Dialog E-1
E.1 Overview . E-3
E.2 Data dictionary organization . E-4
E.3 Activity logging record formats . E-5

Appendix F. Built-in Function Support . F-1
F.1 Overview . F-3
F.2 Internal structure of built-in functions . F-4

F.2.1 Master function table . F-5
F.2.2 Model XDE module . F-6
F.2.3 XDEs and VXDEs . F-8
F.2.4 Processing program modules . F-17
F.2.5 Runtime processing of built-in functions F-24

F.3 Assembler macros . F-27
F.3.1 #EFUNMST . F-27
F.3.2 RHDCEVBF . F-28
F.3.3 #EFUNMOD . F-31

F.4 Changing invocation names . F-40
F.5 Creating user-defined built-in functions F-41

Contents xi

F.5.1 Steps for generating a user-defined built-in function F-41
F.5.2 LRF considerations for user-defined built-in functions F-42
F.5.3 Calling a user-defined built-in function F-42

Appendix G. Security Features . G-1
G.1 Overview . G-3
G.2 CA-ADS compiler security . G-4
G.3 CA-ADS application security . G-5

G.3.1 Response security . G-5
G.3.2 Signon security . G-6

Appendix H. Debugging a CA-ADS Dialog H-1
H.1 Creating a symbol table . H-4
H.2 Trace facility . H-5
H.3 Online debugger . H-7

Index . X-1

xii CA-ADS Reference

How to Use This Manual

How to Use This Manual xiii

What this manual is about

This manual is a reference for Application Development System (CA-ADS)
development tools and facilities. It provides reference information appropriate for
application developers defining online and batch applications.

The manual is divided into two volumes.

Volume 1:

■ Introduces CA-ADS and provides information about tools used to develop
applications

■ Introduces the process language and error-handling facility used in developing
CA-ADS applications

Volume 2:

■ Presents syntax and examples of process language command statements used to
construct processing routines

■ Presents detailed information about facilities and utilities available to the CA-ADS
application developer

New users may find it helpful to familiarize themselves with the CA-ADS User Guide
before relying solely on this reference manual. Experienced users can use this
reference as needed. Developers using CA-ADS/Batch extensions to CA-ADS to
define batch applications should refer to CA-ADS Batch User Guide. Syntax for
developing batch applications is included in this reference manual.

xiv CA-ADS Reference

 Related documentation

■ CA-ADS Quick Reference

■ CA-ADS User Guide

■ CA-IDMS Mapping Facility

■ CA-IDMS Mapping Facility quick Reference

■ IDD DDDL Reference

■ CA-ADS DSECT Reference

■ CA-IDMS SQL Programming

■ CA-ADS Batch User Guide

■ CA-IDMS Security Administration

■ CA-IDMS System Generation

How to Use This Manual xv

Understanding Syntax Diagrams

Look at the list of notation conventions below to see how syntax is presented in this
manual. The example following the list shows how the conventions are used.

UPPERCASE

OR

SPECIAL CHARACTERS

Represents a required keyword, partial keyword,
character, or symbol that must be entered
completely as shown.

lowercase Represents an optional keyword or partial keyword
that, if used, must be entered completely as
shown.

underlined lowercase Represents a value that you supply.

← Points to the default in a list of choices.

lowercase bold

Represents a portion of the syntax shown in
greater detail at the end of the syntax or elsewhere
in the document.

��────────────────────── Shows the beginning of a complete piece of
syntax.

──────────────────────�� Shows the end of a complete piece of syntax.

──────────────────────� Shows that the syntax continues on the next line.

�────────────────────── Shows that the syntax continues on this line.

──────────────────────�─ Shows that the parameter continues on the next
line.

─�────────────────────── Shows that a parameter continues on this line.

�── parameter ─────────� Shows a required parameter.

 �─┬─ parameter ─┬─────�

└─ parameter ─┘
Shows a choice of required parameters. You must
select one.

 �─┬─────────────┬─────�

└─ parameter ─┘
Shows an optional parameter.

 �─┬─────────────┬─────�

├─ parameter ─┤

└─ parameter ─┘

Shows a choice of optional parameters. Select
one or none.

 ┌─────────────┐

 �─(─ parameter ─┴─────�
Shows that you can repeat the parameter or
specify more than one parameter.

┌───── , ─────┐

 �─(─ parameter ─┴─────�
Shows that you must enter a comma between
repetitions of the parameter.

xvi CA-ADS Reference

Sample Syntax Diagram

How to Use This Manual xvii

xviii CA-ADS Reference

 Volume 2. CA-ADS Reference

 CA-ADS Reference

 Chapter 15. Control Commands

15.1 Overview . 15-3
15.2 General considerations . 15-5

15.2.1 Application thread . 15-5
15.2.2 Operative and nonoperative dialogs 15-6
15.2.3 Application levels . 15-6
15.2.4 Mainline dialog . 15-6
15.2.5 The menu stack . 15-7
15.2.6 Database currencies . 15-7

15.3 CONTINUE . 15-10
15.4 DISPLAY . 15-12
15.5 EXECUTE NEXT FUNCTION . 15-17
15.6 INVOKE . 15-19
15.7 LEAVE . 15-22
15.8 LINK . 15-24
15.9 READ TRANSACTION . 15-30
15.10 RETURN . 15-31
15.11 TRANSFER . 15-34
15.12 WRITE TRANSACTION . 15-36

Chapter 15. Control Commands 15-1

15-2 CA-ADS Reference

15.1 Overview

 15.1 Overview

CA-ADS control commands are used to pass control during the execution of an
application. The execution of a control command terminates the execution of the
process that issues the command. A control command can pass control to:

 ■ Another dialog

■ A copy of the same dialog

■ Another component within the same dialog

■ A user-written program

■ Another application function when using the EXECUTE NEXT FUNCTION
command

Summary of control commands: Control commands are listed in the table
below. Each command is presented in alphabetical order after 15.2, “General
considerations.”

Command Purpose

CONTINUE Terminates the current process, executes the dialog's
premap process, and writes a message

DISPLAY Displays a dialog's map, reexecutes a dialog's premap
process, or specifies a message that appears in a map's
message field

EXECUTE NEXT
FUNCTION

Passes control to the application function associated with
a response by means of the control command specified
for the response during application compilation

INVOKE Initiates execution of a lower level dialog in the
application thread

LEAVE Terminates the current application or terminates the
current CA-ADS session

LINK Initiates execution of a lower level dialog, creating a
nested application structure, or initiates execution of a
user program

READ TRANSACTION Terminates the current process, performs a mapin
operation, and selects the next application function or
response to be executed (batch only)

RETURN Initiates execution of a higher level dialog

TRANSFER Initiates execution of a dialog at the same level as the
dialog passing control

Chapter 15. Control Commands 15-3

15.1 Overview

Command Purpose

WRITE TRANSACTION Terminates a current process, performs a mapout
operation, and passes control within an application
(batch only)

15-4 CA-ADS Reference

15.2 General considerations

 15.2 General considerations

At run time, control commands connect the application functions or dialogs that make
up the application by directing the flow of control. The diagram below shows how
control commands pass control from one function or dialog to another. The way that
control is transferred determines the data that is available to the function or dialog
when it receives process control.

The application developer associates control commands with application responses by
using the Response Definition screen during application compilation.

�� For more information on associating a control command with a response, see
"Response Definition screen" in Chapter 2, “CA-ADS Application Compiler (ADSA).”

Alternatively, the application developer can code control commands wherever
appropriate in a premap or response process.

 15.2.1 Application thread

The current sequence of operative functions or dialogs in an application is called the
application thread. A single dialog can occur more than once in an application
structure and can execute more than once within an application thread, whether or not
the function or dialog remains operative.

Control command processing

 Example 1 Example 2
 ┌────────────┐ ┌─────────────┐

 │ │ │ │

 │ CA─ADS ←───┐ │ CA─ADS │

 │ │ │ │ │

 └─────┬──────┘ │ └─────┬───────┘

 │ │ │

 │ │ │

 ┌─────↓──────┐ │ ┌─────↓───────┐

 │ │ │ │ │

│ RDCUST# │ │ ┌──→ RDCUST# │

│ │ │ │ │ │

└─────┬──────┘ │ │ └─────┬───────┘

 │INVOKE │ │ │INVOKE

 │ │ │ │

┌─────↓──────┐ │ │ ┌─────↓───────┐

│ │ │ │ │ │

 ┌─────→ UPDATEC │───┘ │ │ UPDATEC ←──────────────────────────┐

│ │ │LEAVE │ │ │ │

 │ └─────┬──────┘ │ └─────┬───────┘ │

 │ │LINK │ │INVOKE │

 │ │ │ │ │

 │ ┌─────↓──────┐ │ ┌─────↓───────┐ ┌───────────┐ │

 │ │ │ │ │ │TRANSFER │ │ │

└─────┤ UPDATEO │ └──┤ UPDATEO ├─────────→ ADDORDR │────┘

 RETURN │ │ RETURN │ │ │ │RETURN

TO TOP └────────────┘ TO TOP └─────────────┘ └───────────┘

Chapter 15. Control Commands 15-5

15.2 General considerations

15.2.2 Operative and nonoperative dialogs

At run time, a function or dialog can be either operative or nonoperative within an
application thread.

Operative dialog: A dialog becomes operative when it receives processing control.
A function or dialog remains operative when it passes control to a lower level function
or dialog or to another part of itself.

Only one dialog can be operative at any time on any given application level. As long
as a dialog or dialog function remains operative, all record buffers associated with the
dialog are maintained.

Nonoperative dialog: A function or dialog becomes nonoperative when it passes
control to a higher level-function or dialog or to a function or dialog (including a copy
of itself) on the same level. All functions and dialogs become nonoperative when
control passes out of the application.

When a dialog or dialog function becomes nonoperative, the record buffers established
by that dialog are released.

 15.2.3 Application levels

The first function or dialog executed in an application establishes the top level of the
application structure. The INVOKE and LINK commands establish lower levels in the
structure.

Maximum number of levels: By default, an application structure can contain a
maximum of ten levels. This maximum number of levels can be reduced at system
generation time. If the execution of an INVOKE or LINK command causes the
maximum allowable number of levels to be exceeded, CA-ADS abnormally terminates
the application. The application developer should limit the total number of nested
INVOKE and LINK commands accordingly.

 15.2.4 Mainline dialog

The dialog at the top of an application structure must be a mainline dialog. The
application developer defines a dialog as mainline by using the Options and Directives
screen of the dialog compiler

�� The Options and Directives screen is described in Chapter 3, “CA-ADS Dialog
Compiler (ADSC).”

If a dialog function is initiated by an application task code, the dialog associated with
the function must be a mainline dialog. The application developer associates a
function with a task code by using the Task Codes screen during application definition.

15-6 CA-ADS Reference

15.2 General considerations

�� For a description of the Task Codes screen, see Chapter 2, “CA-ADS Application
Compiler (ADSA).”

15.2.5 The menu stack

System-supplied menu-handling routines use a menu stack to keep track of menu
execution at run time. The menu stack is maintained automatically at run time.

Considerations: The following considerations apply:

■ When a menu (or menu/dialog) function is executed in an online application, the
function name is added to the internal menu stack. The menu or menu/dialog
function name is removed from the menu stack when a POP or RETURN function
returns control in either of the following ways:

– To the menu

– To a menu that is higher in the menu stack

■ If a menu or menu dialog function is already in the menu stack when a LINK,
INVOKE, or TRANSFER command passes control again to the function, the first
occurrence of the name is deleted from the stack. The name is then added to the
end of the stack, as usual.

■ Each menu name can appear only once in the menu stack.

 15.2.6 Database currencies

Database currencies are established by the last database command in an operative
dialog. Currencies are saved and made available to lower level dialogs and to the
dialog that established the currencies if control returns to that dialog from a lower
application level.

Considerations: The following considerations apply to currencies:

■ Database currencies are cumulative.

Currencies established by each dialog or dialog function are passed to lower level
dialogs along with any currencies received from a higher level dialog. A lower
level dialog can establish new currencies, which are passed to the next lower level
dialog along with the currencies already established.

■ All database currencies established for a dialog are released when a dialog or a
dialog function becomes nonoperative.

Unless the dialog or dialog function receiving control specifies the NOSAVE
keyword on a LINK command, it establishes its own currencies. These currencies
are established either by restoring the currencies saved when it originally passed
control or by using currencies previously established by a higher level dialog. The
diagram below shows currencies in a CA-ADS application.

Chapter 15. Control Commands 15-7

15.2 General considerations

 Currency action

 DIALOG A

 ┌──────────────────────┐

 │ Currencies │

│Received Established│ DIALOG A executes and establishes

│ EMP A ←───┐ current records of two sets.

 │NONE DEPT X │ │

 │ │ │

 └──────────┬───────────┘ │

 │ LINK │

v │ DIALOG A links to DIALOG B and

DIALOG B │ establishes a current record of

┌──────────────────────┐ │ a third set.

 │ Currencies │ │

│Received Established│ │

 │EMP A EMP A │ │

│DEPT X DEPT X │ │

 │ OFFICE M │ │

 └──────────┬───────────┘ │

 │ INVOKE │

v │ DIALOG B invokes DIALOG C.

 DIALOG C │

 ┌──────────────────────┐ │

 │ Currencies │ │

│Received Established│ │

 │EMP B EMP C │ │

│DEPT Y DEPT Z │ │

 │OFFICE M │ │

 └──────────┬───────────┘ │

│ │ DIALOG C returns control to

 └───────────────┘ DIALOG A:

- Only currencies established

by DIALOG A are available.

- Record buffers still contain

data established by DIALOG C

Effect of control commands on issuing and receiving dialogs: The
following table outlines the effect of control commands on issuing and receiving
dialogs. The EXECUTE NEXT FUNCTION command is not included in this table.
The characteristics established by EXECUTE NEXT FUNCTION depend on which
command is actually executed.

Command New
level
estab-
lished

Status of
issuing
dialog

Data avail.
to
receiving
dialog/
program

Currency
action
for
issuing
dialog

Currency
action for
receiving
dialog/
program

DISPLAY No Operative All data Saved N/A

INVOKE Yes Operative All data Saved Restored

LEAVE No Non-
operative

N/A Released N/A

LINK:

15-8 CA-ADS Reference

15.2 General considerations

Command New
level
estab-
lished

Status of
issuing
dialog

Data avail.
to
receiving
dialog/
program

Currency
action
for
issuing
dialog

Currency
action for
receiving
dialog/
program

DIALOG Yes Operative All data Saved,
unless
NOSAVE
is
specified

Restored

PROGRAM No Operative All, some,
or none
(depending
on
command
specifi-
tion)

Saved,
unless
NOSAVE
is
specified

Program
receives
currencies as
part of
extended run
unit

RETURN No Non-
operative
(any
operative
dialogs
between
the
issuing
dialog and
the
receiving
dialog also
become
non-
operative)

Data
previously
available to
the
receiving
dialog

Released
(curren-
cies for
any
dialogs
between
the
issuing
dialog
and the
receiving
dialog
are also
released)

Restored

TRANSFER No Non-
operative

All data
except that
acquired by
the issuing
dialog

Released Can use curren-
cies previously
established by
higher level
dialogs

Chapter 15. Control Commands 15-9

15.3 CONTINUE

 15.3 CONTINUE

Purpose: Terminates a current process, executes a dialog's premap process, and
specifies a message.

In the online environment, the message appears at the terminal when the dialog
executes a DISPLAY command. In the batch environment, the message is sent to the
log file and/or the operator's console.

 Syntax

��─── CONtinue ────┬─────────────────────────────────┬─ . ────────────────────��

└─┬─ MESSage ─┬─ message-options ─┘
 └─ MSG ─┘

Expansion of message-options

��────┬─ TEXT ─────┬──────┬────────── message-text ───────────────────────────�

│ ├─ IS ─┤

 │ └─ = ─┘

└─ CODE ─────┬──────┬────────── message-code ───────────────────────────

├─ IS ─┤

 └─ = ─┘

 �──�

 ────┬───┬───────────────────────

 │ ┌──────────────┐ │

└─ PARMS ────┬─────┬─── (─↓── parameter ─┴─) ──┘

└─ = ─┘

 �──┬───────────────────────��

 ────┬──┬──────┘

└─ PREFIX ───┬──────┬─────── prefix ─────┘

├─ IS ─┤

 └─ = ─┘

 Parameters

MESSage message-options
Identifies message to be displayed.

MSG can be used in place of MESSAGE.

Expanded syntax for message-options is shown above immediately following the
CONTINUE syntax.

TEXT IS message-text
Specifies the text of a message to be displayed in an online map's message field or
sent to a batch application and a system log file.

Message-text specifies either the name of a variable data field containing the
message text or the text string itself, enclosed in single quotation marks.

The text string can contain up to 240 displayable characters.

IS or = are optional keywords and have no effect on processing.

15-10 CA-ADS Reference

15.3 CONTINUE

CODE IS message-code
Specifies the message dictionary code of a message to be displayed in an online
map's message field or sent to the log file in a batch application.

In a batch application, the message is also sent to the operator, if directed by the
destination specified in the dictionary.

Message-code specifies either the name of a variable data field that contains the
message code or the 6-digit code itself, expressed as a numeric literal.

IS or = are optional keywords and have no effect on processing.

PARMS = parameter
Specifies a replacement parameter for each variable field in the stored message
identified by message-code.

Up to nine replacement parameters can be specified for a message. Multiple
parameters must be specified in the order in which they are numbered and
separated by blanks or commas.

Parameter specifies either the name of an EBCDIC or unsigned zoned decimal
variable data field that contains the parameter value or the actual parameter value,
enclosed in single quotation marks.

The parameter value must contain displayable characters. At run time, each
variable data field in a stored message expands or contracts to accommodate the
size of its replacement parameter. A replacement parameter can be a maximum of
240 bytes.

PREFIX IS prefix
Overrides the default prefix of a dialog and a map.

Prefix must either specify an EBCDIC or unsigned zoned decimal variable data
field that contains a 2-character prefix or the 2-character prefix itself, enclosed in
single quotation marks

IS or = are optional keywords and have no effect on processing.

 Usage

 Considerations

■ The premap process is reexecuted if CONTINUE is issued in the premap process.
This differs from the DISPLAY CONTINUE command, which causes a
pseudo-converse in the online environment.

■ Any message specified on the CONTINUE command is ignored in the online
environment if the DISPLAY command that follows also specifies a message.

■ Up to nine replacement parameters can be specified for a message.

■ Multiple parameters must be separated by blanks or commas.

■ Multiple parameters must be specified in the order in which they occur in the
stored message.

Chapter 15. Control Commands 15-11

15.4 DISPLAY

 15.4 DISPLAY

Purpose: Displays a dialog's map, or reexecutes a dialog's premap process.

Additionally, DISPLAY can specify a message that appears in a map's message field.
If a dialog has a map and a premap process, the premap process must include a
DISPLAY command to display the map. If a DISPLAY command is not coded,
nothing is written to the terminal at run time.

DISPLAY issued without the CONTINUE keyword, displays the map associated with
the current dialog. DISPLAY can be used in a premap process or a response process.

In a pageable map, the detail occurrences that are displayed when the DISPLAY
command is issued depend on the value of the system-defined data field $PAGE and
the number of detail occurrences that a single screen can hold. For example, given a
screen that can hold ten detail lines, if $PAGE equals 1, detail occurrences 1 through
10 are displayed; if $PAGE equals 2, occurrences 11 through 20 are displayed; and so
forth.

 Syntax

��── DISPlay ─┬────────┬─┬──┬─ . ─��

└ NOSAVE ┘ ├─ ERAse ──────────────────────────────────────┤

└─ CONTinue ─┬────────────────────────────────┬┘

└─┬─ MESSAGE ─┬ message-options ─┘
 └─ MSG ─┘

Expansion of message-options

��────┬─ TEXT ─────┬──────┬────────── message-text ───────────────────────────�

│ ├─ IS ─┤

 │ └─ = ─┘

└─ CODE ─────┬──────┬────────── message-code ───────────────────────────

├─ IS ─┤

 └─ = ─┘

 �──�

 ────┬───┬───────────────────────

 │ ┌──────────────┐ │

└─ PARMS ────┬─────┬─── (─↓── parameter ─┴─) ──┘

└─ = ─┘

 �──┬───────────────────────��

 ────┬──┬──────┘

└─ PREFIX ───┬──────┬─────── prefix ─────┘

├─ IS ─┤

 └─ = ─┘

 Parameters

NOSAVE
Specifies that currencies are not saved when control passes from the current
process to the pseudo-converse or premap process. After the pseudo-converse, or
when the premap process begins execution, the dialog's currencies are initialized
to those of the next higher level dialog, if any.

15-12 CA-ADS Reference

15.4 DISPLAY

ERAse
Specifies that the following actions are performed at the terminal:

■ Unprotected map data fields are cleared.

■ The modified data tags (MDTs) for all unprotected map data fields are reset.

■ The keyboard is unlocked.

■ The cursor is placed at the first unprotected map data field.

If specified, ERASE is the only keyword that can follow DISPLAY in a
DISPLAY command.

CONTinue
(Used in a response process) Requests reexecution of the premap process
associated with the current dialog.

The keyword CONTINUE is ignored in a premap process.

MESSage message-options
Identifies message to be displayed.

MSG can be used in place of MESSAGE.

Expanded syntax for message-options is shown above immediately following the
CONTINUE syntax.

TEXT IS message-text
Specifies the text of a message to be displayed in an online map's message field or
sent to a batch application and a system log file.

Message-text specifies either the name of a variable data field containing the
message text or the text string itself, enclosed in single quotation marks.

The text string can contain up to 240 displayable characters.

IS or = are optional keywords and have no effect on processing.

 CODE IS message-code
Specifies the message dictionary code of a message to be displayed in an online
map's message field or sent to the log file in a batch application.

In a batch application, the message is also sent to the operator, if directed by the
destination specified in the dictionary.

Message-code specifies either the name of a variable data field that contains the
message code or the 6-digit code itself, expressed as a numeric literal.

IS or = are optional keywords and have no effect on processing.

PARMS = parameter
Specifies a replacement parameter for each variable field in the stored message
identified by message-code.

Up to nine replacement parameters can be specified for a message. Multiple
parameters must be specified in the order in which they are numbered and
separated by blanks or commas.

Chapter 15. Control Commands 15-13

15.4 DISPLAY

Parameter specifies either the name of an EBCDIC or unsigned zoned decimal
variable data field that contains the parameter value or the actual parameter value,
enclosed in single quotation marks.

The parameter value must contain displayable characters. At run time, each
variable data field in a stored message expands or contracts to accommodate the
size of its replacement parameter. A replacement parameter can be a maximum of
240 bytes.

PREFIX IS prefix
Overrides the default prefix of a dialog and a map.

Prefix must either specify an EBCDIC or unsigned zoned decimal variable data
field that contains a 2-character prefix or the 2-character prefix itself, enclosed in
single quotation marks

IS or = are optional keywords and have no effect on processing.

 Usage

Rules for mapping out fields: The DISPLAY command maps out literal fields and
data fields according to these rules:

■ If the map is different than the map previously displayed, both literal fields and
data fields are mapped out.

■ If the map is the same as the map previously displayed, literal fields are not
mapped out. Data fields, except those set IN ERROR, are mapped out. Note that
the MODIFY MAP command can be used to change the IN ERROR setting for a
map field.

■ If the ERASE keyword is specified, data fields are not mapped out. Instead,
unprotected data fields on the screen are cleared.

■ Data fields are further regulated by specifications made during map definition and
by MODIFY MAP process commands. Both methods allow the specification that
data is not displayed or is erased on a DISPLAY command.

■ For a pageable map, if a PUT DETAIL command causes the first map page to be
displayed, the following DISPLAY command does not map out literal or data
fields. However, the DISPLAY command is still required to terminate the current
process and create a pseudo-converse.

Specifying a message: The DISPLAY command is also used to specify a message
that is to appear in a map's message field.

Message fields are defined by the map field $MESSAGE.

�� For more information, refer to CA-IDMS Mapping Facility.

One $MESSAGE field can be defined anywhere on the map. If the $MESSAGE field
is defined in the detail area of a pageable map, the PUT DETAIL command is used to
specify a message.

15-14 CA-ADS Reference

15.4 DISPLAY

�� For more information, see "PUT DETAIL" in Chapter 17, “Map Commands.”

If a DISPLAY command specifies a message but the map has no message field,
CA-ADS creates a special message map.

Considerations for specifying a message code

■ Each message in the message dictionary is identified by a 6-digit code preceded
by the letters DC. A request for message 987654 retrieves message DC987654.

User-defined messages added to the message dictionary should be identified by a
code in the range 900001 through 999999 and preceded by letters other than DC.

■ Each message in the message dictionary can be assigned a severity code. The
severity code specifies the action that CA-ADS takes when the message is
retrieved. Severity codes are listed in the following table.

Message dictionary severity codes

A message in the message dictionary can contain one or more variable fields that are
replaced with application-specific values at run time. In a DISPLAY command, the
PARMS parameter can be used to code replacement parameters for each variable field
in a specified message.

Within the message definition in the dictionary, symbolic parameters are identified by
an ampersand (&) followed by a 2-digit numeric identifier. These identifiers can
appear in any order. The position of the replacement values in the PARMS parameter
must correspond directly to the 2-digit numeric identifiers in the message; the first
value corresponds to &01, the second to &02, and so forth. For example, assume that
the stored message text is as follows:

Severity code Action

0 Processes the DISPLAY command

1 Snaps all CA-ADS resources and processes the DISPLAY
command

2 Snaps all system areas and processes the DISPLAY command

3 Snaps all CA-ADS resources and terminates CA-ADS with a
task abend code of D002

4 Snaps all system areas and terminates CA-ADS with a task
abend code of D002

5 Terminates CA-ADS with a task abend code of D002

8 Snaps all system areas and terminates the DC system with an
operating system abend code of 3996

9 Terminates the DC system with an operating system abend code
of 3996

Chapter 15. Control Commands 15-15

15.4 DISPLAY

THIS IS TEXT &H1 AND &H3 OR &H2

The PARMS parameter reads PARMS=('A','B','C'). The resulting text would read as
follows:

THIS IS TEXT A AND C OR B

If the message is defined in the dictionary with more than one text line, only the first
line appears in the map's message field.

If the message is defined in the dictionary with a destination of TERMINAL, the
message will be redisplayed at the user's terminal when control exits from the
CA-ADS application.

Examples: The examples below are based on the sample applications shown in
15.2.1, “Application thread” earlier in this chapter where dialog UPDATEO updates or
erases all ORDOR records associated with a CUSTOMER record that is retrieved by
dialog UPDATEC.

Example 1: Retrieving records

The following sample premap process from UPDATEO retrieves the ORDOR records
to be changed. The DISPLAY command is used to display the dialog's map with a
message informing the user of the processing status:

READY.

OBTAIN NEXT ORDOR WITHIN CUSTOMER-ORDER.

IF DB-END-OF-SET

THEN

DISPLAY MESSAGE TEXT IS

'CUSTOMER HAS NO ORDERS. HIT 'CLEAR' TO EXIT.'.

ELSE

DISPLAY MESSAGE CODE IS 9HH1H1

PARMS = (ORD-NUMBER,'ORDERS').

Example 2: Erasing records

The following sample response process from UPDATEO erases a retrieved ORDOR
record. DISPLAY CONTINUE is used to return control to the dialog's premap
process, which retrieves the next ORDOR record:

READY USAGE-MODE IS UPDATE.

ERASE ORDOR ALL MEMBERS.

DISPLAY CONTINUE.

15-16 CA-ADS Reference

15.5 EXECUTE NEXT FUNCTION

15.5 EXECUTE NEXT FUNCTION

Purpose: Passes control in a dialog that is associated with an application function.

 Syntax

��──── EXECute next function ─── . ───��

Usage: EXECUTE NEXT FUNCTION is appropriate for use in applications defined
by using the CA-ADS application compiler (ADSA).

When the user selects a response that is valid for a dialog function at runtime, the
function associated with the response is established as the next function to be
executed. The EXECUTE NEXT FUNCTION command initiates execution of that
function. Control is passed to the function by means of the control command
associated with the application response during application compilation.

 Considerations

■ An EXECUTE NEXT FUNCTION command in a dialog that is not associated
with an application function is processed by the CA-ADS runtime system as a
DISPLAY command. The runtime system displays the following message in the
map's message field:

DC177H18 PLEASE SELECT NEXT FUNCTION

■ The EXECUTE NEXT FUNCTION command executes the function that is
invoked by the application response specified in the AGR-CURRENT-RESPONSE
field of the ADSO-APPLICATION- GLOBAL-RECORD. Note that the response
is moved into AGR-CURRENT-RESPONSE when the user selects an application
response.

■ Premap and response process commands can modify the value of
AGR-CURRENT-RESPONSE, thereby modifying the function executed by the
EXECUTE NEXT FUNCTION command.

�� For more information on the AGR-CURRENT-RESPONSE field, see
"ADSO-APPLICATION-GLOBAL-RECORD" in Appendix A, “System Records.”

■ The premap process of a mapless dialog must move a valid application response
to AGR-CURRENT-RESPONSE before issuing an EXECUTE NEXT FUNCTION
command.

■ If AGR-CURRENT-RESPONSE is modified by a process command, the runtime
system does not perform security checking.

�� The effect of the EXECUTE NEXT FUNCTION command is shown in "Runtime
flow of control" in Chapter 4, “CA-ADS Runtime System.”

Chapter 15. Control Commands 15-17

15.5 EXECUTE NEXT FUNCTION

Example: In this example, control passes to the next function in the CA-ADS
application after the end-of-set condition is reached:

WHILE NOT DB-END-OF-SET

 REPEAT.

OBTAIN NEXT ORDOR WITHIN CUST-ORDOR.

 .

 .

 .

 END.

EXECUTE NEXT FUNCTION.

Because EXECUTE NEXT FUNCTION is used to pass control in this example, the
CA-ADS runtime system determines which function to execute next.

15-18 CA-ADS Reference

15.6 INVOKE

 15.6 INVOKE

Purpose: Passes control to a specified dialog in the current application and
implicitly establishes the next lower level in the application thread.

 Syntax

��───── INVoke ──┬──────────┬── dialog-name ─── . ────────────────────────────��

└─ NOSAVE ─┘

 Parameters

NOSAVE
Specifies that database currencies are not saved for the dialog issuing the
INVOKE command.

dialog-name
Specifies either the name of a variable data field containing the dialog name to
which control passes or the dialog name itself, enclosed in single quotation marks.

 Usage

 Considerations

■ The load module for the named dialog must be available at run time.

■ The dialog that issues the INVOKE command remains operative.

■ A lower level dialog can return control to the dialog by issuing a RETURN
command.

■ The issuing dialog's database currencies are saved and available to the dialog
receiving control, unless the NOSAVE option is specified.

When a dialog that issued an INVOKE NOSAVE command regains control from
a lower level dialog or program, database currencies are dependent upon whether
or not the run unit was extended. The following diagram shows how currencies
are affected when the NOSAVE option is used in extended and nonextended run
units.

Currency settings of extended and nonextended run units

Chapter 15. Control Commands 15-19

15.6 INVOKE

1. DIALOG 1, which uses subschema SS1,

obtains values for records A and B:

 DIALOG 1

 ┌───────────────┐ Currencies:

│ OBTAIN A │ A: Jones

│ OBTAIN B │ B: Accounting

 └───────────────┘

2. DIALOG 1 invokes DIALOG 2 using

the NOSAVE option:

DIALOG 1 ──┐ The run unit is

┌───────────────┐ Currencies: │ extended only if

│ │ A: Jones │ DIALOG 2 uses the

┌──┤ INVOKE NOSAVE │ B: Accounting ──┘ same subschema as

 │ └───────────────┘ DIALOG 1.

 │

 │ DIALOG 2

 │ ┌───────────────┐

 │ │ │

 └──→ │

 └───────────────┘

3. DIALOG 2, which can use DIALOG 1's

record buffers and currencies, obtains

a new occurrence of record A:

 DIALOG 1

 ┌───────────────┐ Currencies:

 │ │ A: Jones

│ INVOKE NOSAVE │ B: Accounting

 └───────────────┘

 DIALOG 2

 ┌───────────────┐ A: Smith

 │ OBTAIN A │

 │ │

 └───────────────┘

4. DIALOG 2 issues a RETURN to DIALOG 1:

 DIALOG 1

 ┌───────────────┐ Currencies:

│ │ If the run unit

│ INVOKE NOSAVE ←──┐ was extended:

└───────────────┘ │ A: Smith

│ B: Accounting

 DIALOG 2 │

┌───────────────┐ │ If the run unit

│ │ │ was not extended:

│ RETURN │──┘ A: _________

 └───────────────┘ B: _________

(Currencies in DIALOG 1

have been initialized)

Considerations for using NOSAVE

■ When the dialog that issues the command regains control from a lower level
dialog and the run unit is extended by the INVOKE command, currencies are set
to those of the most recent dialog returning control.

■ When the dialog that issues the command regains control from a lower level
dialog and the run unit is not extended by the INVOKE command, currencies are
set to the original currencies available to the dialog when it became operative in
the application thread.

15-20 CA-ADS Reference

15.6 INVOKE

�� Information about extended run units can be found in Chapter 4, “CA-ADS
Runtime System.”

Example: In the sample applications shown in 15.2.1, “Application thread” earlier in
this chapter, dialog RDCUST# prompts the user for the CALC key of a CUSTOMER
record to be retrieved. RDCUST# passes control to dialog UPDATEC, which retrieves
and displays the record, and then modifies or erases it as instructed by the user.
RDCUST# uses the following response process to pass control to UPDATEC:

INVOKE 'UPDATEC'.

Because RDCUST# uses the INVOKE command to pass control, processing can return
to the RDCUST# mapout operation following completion of UPDATEC processing.
This allows the user to update multiple CUSTOMER records in one CA-ADS runtime
session.

Chapter 15. Control Commands 15-21

15.7 LEAVE

 15.7 LEAVE

Purpose: Terminates the current application thread or terminates the current
CA-ADS runtime session.

 Syntax

��── LEAVE ─┬──�─

├─ APPLication ← ──┬────────────────────────────────────┬────

│ └─ NEXT ─┬─ TASK - task-code ───────┬┘

│ └─ dialog ← - dialog-name ─┘

└─ ADS/online ─────┬──────────────────────────┬──────────

└─ NEXT TASK dc-task-code ─┘

─�───┬── . ───────────────────��

 ───┤

 ───┬───┬─┘

└─ CONDition code ─┬──────┬─ condition-code ──┘

├─ IS ─┤

 └─ = ─┘

 Parameters

APPLication
Terminates the current application and passes control as specified by NEXT
TASK or NEXT dialog.

LEAVE is the equivalent of LEAVE APPLICATION.

NEXT TASK task-code
Passes control to an application as defined on the Task Codes screen of the
application compiler.

Task-code specifies an application task code, as defined on the Task Codes screen
of the application compiler. Task-code is either the name of a variable field
containing the task code or the task code itself, enclosed in single quotation
marks.

NEXT dialog dialog-name
Specifies the name of a mainline dialog to which control passes. If the keyword
TASK or dialog is not specified, dialog is the default.

Dialog-name is either the name of a variable data field that contains the dialog
name or the dialog name itself, enclosed in single quotation marks.

The load module for the named dialog must be stored in the data dictionary.

ADS/online
Terminates the current application and the current CA-ADS session. Control
returns to CA-IDMS/DC or CA-IDMS/UCF (DC/UCF).

NEXT TASK dc-task-code
(Online only) Passes control to another DC/UCF task.

Dc-task-code is either the name of a variable field containing the DC/UCF task or
the task name itself, enclosed in single quotation marks.

15-22 CA-ADS Reference

15.7 LEAVE

Dc-task-code must be defined with the NOINPUT parameter, which specifies that
only a task code, and no additional data, is expected.

CONDition code IS condition-code
(Batch OS/390 only) Clause introducing a completion code for the current job
step.

The completion code can be tested using the COND parameter in the job control
language (JCL).

Condition-code is either the name of a variable field containing the condition code
or the number itself, expressed as a numeric literal.

IS or = are optional keywords and have no effect on processing.

 Usage

Effects of issuing LEAVE

■ All operative dialogs in the terminating application become nonoperative.

■ All database currencies are released.

■ All record buffers are freed.

Example: Dialog UPDATEC, shown in Example 1 in the earlier diagram, includes
the following response process, which allows the terminal operator to terminate the
application thread:

LEAVE APPLICATION.

When the above response process executes, control passes to the Dialog Selection
screen. The user can then select the next mainline dialog to be executed.

Chapter 15. Control Commands 15-23

15.8 LINK

 15.8 LINK

Purpose: Specifies the next dialog executed in a current application.

LINK is also used to request execution of a COBOL, PL/I, or Assembler program.

 Syntax:

��── LINK ──┬──────────┬── to ─┬─┬────────────────────┬─ dialog-name ─────────�

└─ NOSAVE ─┘ │ └─ DIALOG ───┬─ IS ─┬┘

 │ └─ = ─┘

└┬─ PROGram ─┬─┬──────┬─ program-name ─────────

└─ PGM ─────┘ ├─ IS ─┤

 └─ = ─┘

 �───────┬─────────────────────────────┬─────────────────────┬── . ───────────��

└─ USING (control-options) ─┘ │

 │

 ───────┬───┬─┘

 │ ┌───────────────┐ │

└─ USING (control-options ─↓─ record-name ─┴─) ─┘

Expansion of control-options

��─┬─ MAP-CONTROL ─┬──┬─ SUBSCHEMA-CONTROL ─┬─────────────────────────────────��

└─ MAP_CONTROL ─┘ └─ SUBSCHEMA_CONTROL ─┘

 Parameters

NOSAVE
Specifies that the database currencies for the dialog that issues the LINK
command are not saved.

When a dialog that issues a LINK NOSAVE command regains control from a
lower level dialog or program, its database currencies are set as follows:

■ If the LINK command extends a run unit, the dialog's currencies are passed
back up to the dialog or program to which the linking dialog passed control.

■ If the LINK command does not extend a run unit, the dialog's database
currencies are reinitialized to whatever they were when the dialog gained
control.

DIALOG IS dialog-name
Specifies the name of the dialog to which control passes.

Dialog-name is either the name of a variable data field that contains the dialog
name or the dialog name itself, enclosed in single quotation marks.

The load module for the named dialog must be stored in the data dictionary of
load library.

IS or = are optional keywords and have no effect on processing.

15-24 CA-ADS Reference

15.8 LINK

PROGram IS program-name
Specifies the name of the COBOL, PL/I, or Assembler program to which control
is passed.

Program-name is either the name of a variable data field that contains the
program name or the program name itself, enclosed in single quotation marks.

The load module for the named program must be defined under DC/UCF as a
program. The program can be defined in any of the following ways:

■ At system generation by means of the PROGRAM statement

■ In the IDD by means of the DDDL PROGRAM statement

■ Under DC/UCF by means of the DCMT VARY DYNAMIC PROGRAM
master terminal command

PGM can be used in place of PROGRAM.

USING control-options
Identifies the control options to be used.

Expanded syntax for control-options is shown above immediately following the
LINK syntax.

Multiple parameters in the USING clause must be separated by blanks or commas.
The record and control block names must be specified in the same order in which
they are defined in the user program.

The SQLSSI parameter is used when passing a global cursor from a CA-ADS
dialog to a user program. SQLSSI is a record that contains the SQL session
identifier which is assigned when the dialog's transaction started. This record is
copied into the dialog automatically, so the user does not need to add it to the
dialog. The user program must have a record in its "linkage" section defined with
the SQLSESS datatype.

record-name
Specifies the data that is passed to the named user program.

MAP-CONTROL
Passes the map request block of the original CA-ADS dialog to the lower level
dialog.

The lower level dialog must specify the same map as the calling dialog. The
version number and date/time stamp for both maps must be identical. If the maps
differ, the application abends.

The keyword MAP_CONTROL may be used in place of MAP-CONTROL.

SUBSCHEMA-CONTROL
Extends a calling dialog's run unit to a lower level dialog. The runtime system
ignores any differences between the two dialog's subschemas, schemas, and area
ready modes. On return to the calling dialog, the run unit is unconditionally
extended upward.

Chapter 15. Control Commands 15-25

15.8 LINK

The dialog to which control is extended is not allowed to access a record or set
not defined in the original dialog's subschema. Such an attempt causes an abend
at runtime.

The keyword SUBSCHEMA_CONTROL may be used in place of
SUBSCHEMA-CONTROL.

 Usage

Control passed to a specified dialog: When control is passed to a specified dialog
by means of a LINK command, the next lower level in the application thread is
implicitly established and a nested structure is created.

 Considerations

■ The dialog issuing the LINK command becomes the top of the nested structure
and remains operative.

If an application response passes control by means of a LINK command, the
function from which the response was selected becomes the top of a nested
structure.

■ A LINK command within a nested structure establishes the top of a lower nested
level.

■ Dialogs within a nested structure can issue any of the control commands.

A RETURN command cannot pass control higher than the top of the lowest
nested level that is operative in the application thread.

■ The dialog issuing a LINK command expects control to return to the command
following the LINK instruction.

■ The issuing dialog's database currencies are saved and are available to the dialog
when it regains control, unless the NOSAVE option is used.

When the dialog that issued a LINK NOSAVE command regains control from a
lower level dialog or program, the database currencies set depend on whether or
not the run unit was extended.

Refer to the LINK command syntax rules that follow this discussion for currency
settings of extended and nonextended run units.

�� Information about extended run units can be found in Chapter 4, “CA-ADS
Runtime System.”

Control passed to a user program: When a LINK command specifies a user
program, control passes outside the CA-ADS environment and temporarily suspends
CA-ADS sessions.

15-26 CA-ADS Reference

15.8 LINK

 Considerations

■ The LINK command must explicitly specify any data to be passed to the user
program, including the subschema control block, the map request block, and any
records used in the program's processing.

■ A user program has the option of using the calling dialog's run unit.

If the LINK command does not contain subschema-control in its USING list, the
user program cannot access its calling dialog's run unit. The user program can
access a database by binding a run unit and establishing its own currencies. This
run unit will be bound concurrently with the dialog's run unit.

If the LINK command contains subschema-control in its USING list, the dialog's
run unit is passed to the user program. Any database records to be shared with
the dialog should be passed in the USING RECORD list.

■ A user program must return control to CA-ADS by means of a DC RETURN
statement.

When the user program issues the DC RETURN statement, the suspended
CA-ADS session resumes and control passes to the command following the LINK
command.

The format of the DC RETURN statement varies based on whether the program
has previously issued a DC RETURN statement that specified a next task code
other than ADSR, as follows:

– If the program has previously issued a DC RETURN statement that specified
a next task code other than ADSR, the DC RETURN statement that returns
control to CA-ADS must have the following format:

DC RETURN NEXT TASK CODE ADSR.

DC RETURN NEXT TASK CODE will end the task and rollback any open
run unit, whether it was bound by the user program or passed from the calling
dialog.

ADSR is the default task code that invokes ADSOMAIN with no input. The
task code can be changed by means of the DC/UCF system generation TASK
statement.

�� For more information on specifying the task code for the CA-ADS runtime
system, refer to CA-IDMS System Generation.

– If the program has not previously issued a DC RETURN statement that
specified a next task code other than ADSR, the DC RETURN statement that
returns control to CA-ADS can have the following format:

DC RETURN

■ A dialog with a standard subschema can link to a dialog with an LRF subschema
using subschema control. However, if the lower-level dialog makes an LR call, a
status of 0063 is returned; in this case, the status is equivalent to a status of 2008.

Chapter 15. Control Commands 15-27

15.8 LINK

To use the LINK command effectively in conjunction with user programs, refer to the
online programming techniques presented in the CA-IDMS DML Reference for the
appropriate language.

Examples: Example 1: Passing control to a lower level dialog

Dialog UPDATEC, shown in Example 1 of 15.2.1, “Application thread” earlier in this
chapter, uses the response process listed below to pass control to dialog UPDATEO.

UPDATEO obtains an ORDOR record for the current CUSTOMER, requests
modifications, and updates the record in the database. When UPDATEO returns
control to dialog UPDATEC, processing resumes with the DISPLAY command that
follows the LINK command:

LINK TO DIALOG 'UPDATEO'.

DISPLAY MESSAGE TEXT IS

'CUSTOMER ORDER HAS BEEN CHANGED'.

Example 2: Passing control to a COBOL program

The following statement from the premap process associated with dialog UPDATEC
passes control to the COBOL program LOOKUP. LOOKUP uses the subschema
control block and CUSTOMER record buffer from UPDATEC to check the status of
the current customer:

LINK PROGRAM 'LOOKUP'

USING (SUBSCHEMA-CONTROL,CUSTOMER).

Example 3: Extending the current map session

In this example, ERRCHK is a dialog that contains special error-checking and
validating routines. ERRCHK uses the same map as the calling dialog. The LINK
command passes current map attributes and data to ERRCHK.

When ERRCHK finds errors, it:

■ Sets the appropriate fields in error by modifying error attributes for the map.

■ Returns control to the calling dialog. The error attributes are returned along with
current map data.

The sample LINK statement that passes control to ERRCHK is:

LINK TO DIALOG 'ERRCHK'

USING (MAP-CONTROL).

Example 4: Extending the current run unit

In this example:

■ The calling dialog uses subschema EMPSS01. This subschema contains records
EMPLOYEE and DEPARTMENT.

15-28 CA-ADS Reference

15.8 LINK

■ The LINK command unconditionally extends the current run unit to dialog
UPDATE, which is a mapless dialog containing update logic for records
EMPLOYEE and DEPARTMENT.

■ The USING statement bypasses the checking of the subschema and ready modes
when passing the run unit.

■ Dialog UPDATE updates the database and then returns control to the calling
dialog.

The sample LINK statement that passes control to UPDATE is:

LINK TO DIALOG 'UPDATE'

USING (SUBSCHEMA-CONTROL).

Example 5: COBOL program that was passed the dialog's subschema-control

The following example shows a LINKed-to COBOL program that was passed the
dialog's SUBSCHEMA-CONTROL.

ENVIRONMENT DIVISION.

PROTOCOL. IDMS-RECORDS MANUAL.

WORKING-STORAGE SECTION.

H1 COPY IDMS SUBSCHEMA-NAMES.

H1 COPY IDMS RECORD <the name of each database record that is

needed but was not passed in the USING list>

LINKAGE SECTION.

H1 COPY IDMS SUBSCHEMA-CTRL.

H1 COPY IDMS RECORD <the name of each database record that is

passed in the LINK command>

PROCEDURE DIVISION.

BIND <the name of each database record that is needed but was

not passed in the LINK command>

Chapter 15. Control Commands 15-29

15.9 READ TRANSACTION

 15.9 READ TRANSACTION

Purpose: (CA-ADS/Batch only) Terminates the current process, performs a mapin
operation, and then selects the next application function or response process to be
executed.

 Syntax

��────── READ TRANsaction ──────┬──────────┬───── . ──────────────────────────��

└─ OUTput ─┘

 Parameters

OUTput
Specifies that the file is to be opened as an input/output file.

 Usage

 Considerations

■ OUTPUT must be specified in the first READ TRANSACTION command for a
VSAM entry-sequenced data set (ESDS) that is to be opened for both input and
output.

■ OUTPUT is ignored if the file is already opened; if the file is not a VSAM ESDS
file, the application abends.

■ If the current record's response field selects an immediately executable function
that is not the same as the current function, the runtime system passes control to
the newly selected function. The next time a mapin operation is performed for the
file, the runtime system immediately maps in the record.

■ On a mapin operation, the runtime system automatically opens the file being read
if the file is not already opened.

15-30 CA-ADS Reference

15.10 RETURN

 15.10 RETURN

Purpose: Passes control to a higher level dialog or function in the application
thread.

 Syntax

��─── RETurn ─┬──────────────────┬─┬────────────┬─┬────────────┬─ . ──────────��

├─ TO dialog-name ─┤ └┬─ CLEAR ─┬─┘ └─ CONTinue ─┘

└─ to ─┬─ TOP-─┬───┘ └─ CLR ───┘

└─ ALL ─┘

 Parameters

TO dialog-name
Introduces the name of a higher level dialog to which control passes.

Dialog-name can be the name of a variable data field that contains the dialog
name or the dialog name itself, enclosed in single quotation marks.

to TOP
Specifies the highest level to which control can pass.

ALL can be used in place of to TOP.

CLEAR
Specifies that record buffers are reinitialized and currencies are released for the
dialog receiving control.

CLEAR is ignored if the receiving dialog is at the top of a nested application
structure.

CLR can be used in place of CLEAR.

CONTinue
Specifies that control returns to the first command in the premap process of the
dialog receiving control.

If CONTINUE is not specified, control returns to the mapout operation of the
dialog that receives control. If the receiving dialog is at the top of a nested
application structure, CONTINUE is ignored.

 Usage

 Considerations

■ The dialog or function receiving control must be operative.

■ The dialog that issues the RETURN command becomes nonoperative as do any
operative dialogs or functions on a level between the issuing and receiving dialogs
or functions.

■ All database currencies established by the dialog issuing the RETURN command
are released.

Chapter 15. Control Commands 15-31

15.10 RETURN

■ A RETURN command cannot pass control higher than the top of the lowest level
nested application structure created by a LINK command.

■ The named dialog must not be higher than the top of the nested application
structure in which the issuing dialog participates.

■ If the named dialog is operative at more than one higher level, control passes to
the lowest level operative dialog with the specified name.

■ If the issuing dialog participates in a nested application structure, control returns to
the top of the nested structure.

■ If the issuing dialog does not participate in a nested structure, control returns to
the mainline dialog at the top of the applicaton thread.

■ If a RETURN statement does not specify a receiving dialog, control passes to the
next higher level dialog or function.

■ If the mainline dialog at the top of an application thread issues a RETURN
command, the RETURN command is treated as a LEAVE APPLICATION
command.

■ A dialog that receives control at the top of a nested structure resumes execution at
the command that follows the LINK command.

■ RETURN can pass control within a nested application structure to any operative
dialog that passed control with an INVOKE command.

■ If the issuing dialog is not in a nested structure, RETURN can pass control to any
higher level operative dialog or function, or directly to the top of the application
structure.

■ The application developer can specify whether the dialog receiving control
resumes execution with its premap process or with its mapout operation.

■ The application developer can also request reinitialized record buffers for the
dialog that receives control.

Examples: The examples below show the use of the RETURN command in
response processes from dialogs used in the two sample applications shown in 15.2.1,
“Application thread” earlier in this chapter:

Example 1: Using RETURN with the LINK command

In Example 1 of 15.2.1, “Application thread” earlier in this chapter, dialog UPDATEC
passes control to the dialog UPDATEO by means of a LINK command. The
following response process from dialog UPDATEO returns control to the command
following the LINK command in dialog UPDATEC:

READY USAGE-MODE IS UPDATE.

MODIFY ORDOR.

RETURN.

Example 2: Using RETURN with the INVOKE command

15-32 CA-ADS Reference

15.10 RETURN

In Example 2 of 15.2.1, “Application thread” earlier in this chapter, dialog UPDATEC
passes control to the dialog UPDATEO by means of an INVOKE command. The
following response process from dialog UPDATEO returns control to the mainline
dialog RDCUST# and reinitializes the record buffers associated with RDCUST#:

READY USAGE-MODE IS UPDATE.

MODIFY ORDOR.

RETURN TOP CLEAR.

Example 3: Transferring control within the same level

In Example 2 of 15.2.1, “Application thread” earlier in this chapter, dialog UPDATEO
provides the ability to transfer to dialog ADDORDR. ADDORDR prompts the user
for new order information. The following response process from dialog ADDORDR
adds a new ORDOR record to the database and returns control to the mapout operation
of dialog UPDATEC:

READY USAGE-MODE IS UPDATE.

STORE ORDOR.

RETURN.

Chapter 15. Control Commands 15-33

15.11 TRANSFER

 15.11 TRANSFER

Purpose: Passes control to a specified dialog at the same level in the application
structure.

 Syntax:

��─── TRANsfer ───┬────────────┬── to dialog-name ─── . ──────────────────────��

└─ NOFinish ─┘

 Parameters

NOFinish
Specifies that the current run unit is to be extended.

�� For information about extended run units, see Chapter 4, “CA-ADS Runtime
System.”

to dialog-name
Either the name of a variable data field that contains the dialog name to which
control passes or the dialog name itself, enclosed in single quotation marks.

The load module for the named dialog must be stored in the data dictionary.

 Usage

 Considerations

■ When specified along with the NOFINISH option, TRANSFER can extend the
current run unit.

■ When TRANSFER is specified without NOFINISH, a dialog that issues a
TRANSFER command becomes nonoperative.

■ The receiving dialog or function replaces the issuing dialog in the application
thread.

■ The receiving dialog or function has access to database currencies established by
dialogs at higher levels in the application thread and to the contents of global
records and of any records whose buffers were established by dialogs at higher
levels in the application thread.

■ A dialog can transfer control to itself.

■ The copy of the dialog receiving control acquires newly initialized record buffers.

■ When a dialog transfers control to itself, the FIRST-TIME status is reset.

�� FIRST-TIME status is discussed in Chapter 8, “Conditional Expressions.”

Examples: The following examples use the TRANSFER statement to pass control
to a dialog at the same level.

15-34 CA-ADS Reference

15.11 TRANSFER

Example 1: Using the dialog name

In Example 2 of 15.2.1, “Application thread” earlier in this chapter, dialog UPDATEO
passes control to dialog ADDORDR by means of the following statement:

TRANSFER TO 'ADDORDR'.

Example 2: Using a variable data field to transfer control

In this example, control passes either to dialog ADDORDR or to dialog ORDCOUNT,
depending on the outcome of the OBTAIN command:

OBTAIN NEXT ORDOR WITHIN CUST-ORDER.

IF DB-END-OF-SET

THEN

MOVE 'ADDORDR' TO NEXT-DIALOG.

ELSE

MOVE 'ORDCOUNT' TO NEXT-DIALOG.

TRANSFER TO NEXT-DIALOG.

Chapter 15. Control Commands 15-35

15.12 WRITE TRANSACTION

 15.12 WRITE TRANSACTION

Purpose: (CA-ADS/Batch only) Performs the following sequence of functions:

1. Terminates the current process

2. Performs a mapout operation

■ If the dialog's current input file record contains no errors and the keyword
SUSPENSE is not included in the command, the mapout writes a record to
the dialog's associated output file, according to the output file map definition.

■ If the input file record contains errors or the keyword SUSPENSE is included
in the command, the mapout writes the input record to the dialog's suspense
file and sends applicable error messages to the log file.

3. Passes control within the application. Control can be passed to:

■ The dialog's premap process or mapin operation

■ A higher level dialog or application function

 Syntax

��──── WRITE TRANsaction ─────┬───────────────┬───────────────────────────────��

└─ to SUSpense ─┘

 �──┬───┬───────�

├─ CONTinue ──┤

└─ RETurn ────┬──────────────────┬─┬───────────┬─┬────────────┬───┘

├─ TO dialog-name ─┤ └┬─ CLEAR ─┬┘ └─ CONTinue ─┘

└┬─ to TOP ─┬──────┘ └─ CLR ───┘

└─ ALL ────┘

 �──┬─────────────────────────────────┬── . ──────────────────────────────────��

└┬ MESSAGE ─┬── message-options ──┘
└ MSG ─────┘

Expansion of message-options

��────┬─ TEXT ─────┬──────┬────────── message-text ───────────────────────────�

│ ├─ IS ─┤

 │ └─ = ─┘

└─ CODE ─────┬──────┬────────── message-code ───────────────────────────

├─ IS ─┤

 └─ = ─┘

 �──�

 ────┬───┬───────────────────────

 │ ┌──────────────┐ │

└─ PARMS ────┬─────┬─── (─↓── parameter ─┴─) ──┘

└─ = ─┘

 �──┬───────────────────────��

 ────┬──┬──────┘

└─ PREFIX ───┬──────┬─────── prefix ─────┘

├─ IS ─┤

 └─ = ─┘

 Parameters

15-36 CA-ADS Reference

15.12 WRITE TRANSACTION

to SUSpense
Specifies that the dialog's input record is written to the suspense file even if it
does not contain errors. Nothing is written to the dialog's output file.

CONTinue
Specifies that control is passed to the dialog's premap process after mapout
operation.

RETurn
Specifies that control is returned to a higher level dialog or application function
after mapout operation.

TO dialog-name
Either the name of a variable data field that contains the dialog name to
which control is passed or the dialog name itself, enclosed in single quotation
marks.

to TOP
Specifies the highest level to which control can pass.

ALL can be used in place of to TOP.

CLEAR
Specifies that record buffers are reinitialized and currencies are released for
the dialog receiving control.

CLEAR is ignored if the receiving dialog is at the top of a nested application
structure.

CLR can be used in place of CLEAR.

CONTinue
Specifies that control returns to the first command in the premap process of
the dialog receiving control. If not specified, control returns to the mapout
operation of the dialog that receives control. If the receiving dialog is at the
top of a nested application structure, CONTINUE is ignored.

If neither CONTINUE nor RETURN is specified, control passes to the
dialog's mapin operation. The runtime system maps the next record into
variable storage, then selects the next application function or dialog response
process to be executed.

Note: For applications defined using the application compiler, the runtime
system first examines the current record's response field. If the field
selects an immediately executable function that is not the same as the
current function, the runtime system passes control to the selected
function. The next time a mapin operation is performed for the file,
the runtime system immediately maps in the record.

MESSage message-options
Identifies message to be displayed.

MSG can be used in place of MESSAGE.

Expanded syntax for message-options is shown above immediately following the
CONTINUE syntax.

Chapter 15. Control Commands 15-37

15.12 WRITE TRANSACTION

TEXT IS message-text
Specifies the text of a message to be displayed in an online map's message field or
sent to a batch application and a system log file.

Message-text specifies either the name of a variable data field containing the
message text or the text string itself, enclosed in single quotation marks.

The text string can contain up to 240 displayable characters.

IS or = are optional keywords and have no effect on processing.

 CODE IS message-code
Specifies the message dictionary code of a message to be displayed in an online
map's message field or sent to the log file in a batch application.

In a batch application, the message is also sent to the operator, if directed by the
destination specified in the dictionary.

Message-code specifies either the name of a variable data field that contains the
message code or the 6-digit code itself, expressed as a numeric literal.

IS or = are optional keywords and have no effect on processing.

PARMS = parameter
Specifies a replacement parameter for each variable field in the stored message
identified by message-code.

Up to nine replacement parameters can be specified for a message. Multiple
parameters must be specified in the order in which they are numbered and
separated by blanks or commas.

Parameter specifies either the name of an EBCDIC or unsigned zoned decimal
variable data field that contains the parameter value or the actual parameter value,
enclosed in single quotation marks.

The parameter value must contain displayable characters. At run time, each
variable data field in a stored message expands or contracts to accommodate the
size of its replacement parameter. A replacement parameter can be a maximum of
240 bytes.

PREFIX IS prefix
Overrides the default prefix of a dialog and a map.

Prefix must either specify an EBCDIC or unsigned zoned decimal variable data
field that contains a 2-character prefix or the 2-character prefix itself, enclosed in
single quotation marks

IS or = are optional keywords and have no effect on processing.

 Usage

 Considerations

■ The named dialog must not be higher than the top of a nested application structure
in which the issuing dialog participates.

15-38 CA-ADS Reference

15.12 WRITE TRANSACTION

■ If the named dialog is operative at more than one higher level, control passes to
the lowest level dialog with the specified name.

■ If the write operation results in a physical output-error condition, the application
terminates.

■ A WRITE TRANSACTION command can be issued in a dialog that is not
associated with an output file. In this case, the command is used only to write an
input record to the suspense file. If the input record is not in error, nothing is
written to the suspense file.

■ The WRITE TRANSACTION command also allows specification of a message to
be sent to the log file or to the operator's console.

■ The destination of the message depends on the routing codes specified using
ADSOBSYS or at run time in a control statement.

■ If the issuing dialog participates in a nested application structure, control returns to
the top of the nested structure.

■ If the issuing dialog does not participate in a nested structure, control returns to
the mainline dialog at the top of the application thread.

■ If a RETURN statement does not specify a receiving dialog or TOP, control
passes to the next higher level dialog or function.

■ If the mainline dialog at the top of an application thread issues a RETURN
command, the RETURN command is treated as a LEAVE APPLICATION
command.

■ Up to nine replacement parameters can be specified for a message.

■ Multiple parameters must be separated by blanks or commas.

■ Multiple parameters must be specified in the order in which they occur in the
stored message.

Chapter 15. Control Commands 15-39

15-40 CA-ADS Reference

Chapter 16. Database Access Commands

16.1 Overview . 16-3
16.2 Navigational DML . 16-5

16.2.1 Overview of navigational database access 16-5
16.2.2 Use of native VSAM data sets . 16-7
16.2.3 Record locking . 16-9
16.2.4 Suppression of record retrieval locks 16-10
16.2.5 Overview of ACCEPT . 16-12
16.2.6 ACCEPT DB-KEY FROM CURRENCY 16-12
16.2.7 ACCEPT DB-KEY RELATIVE TO CURRENCY 16-14
16.2.8 ACCEPT PAGE-INFO . 16-16
16.2.9 ACCEPT STATISTICS . 16-17
16.2.10 BIND PROCEDURE . 16-19
16.2.11 COMMIT . 16-20
16.2.12 CONNECT . 16-22
16.2.13 DISCONNECT . 16-25
16.2.14 ERASE . 16-27
16.2.15 Overview of FIND/OBTAIN . 16-30
16.2.16 FIND/OBTAIN CALC . 16-31
16.2.17 FIND/OBTAIN CURRENT . 16-33
16.2.18 FIND/OBTAIN DB-KEY . 16-34
16.2.19 FIND/OBTAIN OWNER . 16-37
16.2.20 FIND/OBTAIN WITHIN SET/AREA 16-38
16.2.21 FIND/OBTAIN WITHIN SET USING SORT KEY 16-42
16.2.22 GET . 16-44
16.2.23 KEEP . 16-46
16.2.24 KEEP LONGTERM . 16-47
16.2.25 MODIFY . 16-53
16.2.26 READY . 16-55
16.2.27 RETURN DB-KEY . 16-57
16.2.28 ROLLBACK . 16-59
16.2.29 STORE . 16-60

16.3 Logical Record Facility commands . 16-64
16.3.1 Overview of LRF database access 16-64
16.3.2 WHERE clause . 16-65
16.3.3 Conditional expression . 16-65
16.3.4 Comparison expression . 16-66
16.3.5 ERASE . 16-68
16.3.6 MODIFY . 16-69
16.3.7 OBTAIN . 16-70
16.3.8 ON command . 16-71
16.3.9 STORE . 16-75

Chapter 16. Database Access Commands 16-1

16-2 CA-ADS Reference

16.1 Overview

 16.1 Overview

A CA-ADS application can access the CA-IDMS/DB database by using navigational
DML or SQL DML.

Navigational DML: CA-ADS navigational DML is used to retrieve and update
database or VSAM records and perform database control functions. Navigation DML
commands can be used in process logic to store, retrieve, modify, and delete data in a
non-SQL defined database, using a standard subschema or a Logical Record Facility
(LRF) subschema.

When using LRF, the application developer selects a predefined path that meets the
dialog's data requirements and codes simple database requests in dialog process logic.
Database navigation is defined in the path, not in the process.

SQL DML: In a CA-ADS application, SQL DML can be used to retrieve and update
data defined with:

■ Records in non-SQL defined databases (associated with an SQL schema)

■ Tables in SQL-defined databases

�� For more information about using SQL DML statements, see SQL Self-Training
Guide and CA-IDMS SQL Programming.

Navigational DML and LRF commands used in the CA-ADS environment are
summarized in the following two tables. Documentation of command syntax appears
later in this chapter.

Summary of navigational DML commands

Command Purpose

ACCEPT Moves database keys page info statistics from the
database management system to a dialog

BIND PROCEDURE Establishes communication from a dialog to a
DBA-written procedure

COMMIT Writes checkpoints to the journal file and releases
locks held on database records

CONNECT Connects member records to sets

DISCONNECT Disconnects member records from sets

ERASE Erases records from the database

FIND Locates records in the database

Chapter 16. Database Access Commands 16-3

16.1 Overview

Summary of LRF commands

Command Purpose

GET Copies record contents from the database to a dialog's
record buffers

KEEP Places locks on records

MODIFY Replaces records in the database with the contents of
a dialog's record buffers

OBTAIN Locates records in the database and copies their
contents to a dialog's record buffers

READY Prepares database areas for processing

RETURN DB-KEY Retrieves index entries without the associated record
(used only with the Sequential Processing Facility and
with system-owned indexed records)

ROLLBACK Requests recovery of the database

STORE Adds a record to the database

Command Purpose

ERASE Deletes Logical Record Facility record occurrences

MODIFY Changes field values in Logical Record Facility record
occurrences

OBTAIN Retrieves Logical Record Facility record occurrences

ON Performs additional processing based on the outcome
of conditional testing of Logical Record Facility
record access

STORE Stores a new occurrence of a Logical Record Facility
record

16-4 CA-ADS Reference

16.2 Navigational DML

 16.2 Navigational DML

Each navigational DML command is presented alphabetically after the overview of
navigational database access.

16.2.1 Overview of navigational database access

To use navigational DML commands effectively in a process, the application developer
should be familiar with database programming concepts. These concepts are discussed
in detail in the CA-IDMS Navigational DML Programming.

Considerations: The following special considerations apply to accessing the
database in the CA-ADS environment:

■ Before coding database commands, the application developer must be familiar
with the characteristics of the subschema associated with the dialog. The
subschema specifies the elements, records, sets, and areas available to the dialog.
The subschema also includes the default usage modes for the database areas and
specifies any restrictions on the use of database commands.

■ Each database command can be coded any number of times within a process.

■ If a READY command specifies the same area more than once within a process,
the usage mode specified in the last READY statement applies to the specified
area for the entire process.

The READY command is executed when the first DML command is encountered.
If an invalid (non-zero) error status is returned from the READY or BIND
processing, the dialog aborts. Process code cannot intercept these errors.

■ At runtime, CA-ADS automatically initializes a buffer for each record type
associated with the mainline dialog. Subsequent dialogs that access the same
record type use the existing record buffer unless a reinitialized buffer for the
record is requested by using the Records and Tables screen during dialog
compilation.

�� The Records and Tables screen is described in "Records and Tables screen" in
Chapter 3, “CA-ADS Dialog Compiler (ADSC).”

■ To enable proper positioning and movement through the database during the
execution of an application, the CA-ADS runtime system automatically maintains
database keys for the records that are accessed by a dialog as shown in the
following table.

Record Description

Current of run unit The most recently accessed record occurrence

Current of record type The most recently accessed occurrence of each record
type

Chapter 16. Database Access Commands 16-5

16.2 Navigational DML

■ Database commands use and update currencies, as listed in the currency chart
below.

CA-ADS saves or releases the currencies established during dialog execution
based on the command used to pass control to the next function or dialog.

�� For a discussion of currency action, see Chapter 15, “Control Commands.”

Record Description

Current of set type The most recently accessed record occurrence (owner
or member) of each set

Current of area The most recently accessed record occurrence in each
area

Database
command

Currency updated by successful
execution

Successful execution

Run unit Record Set Area

ACCEPT* X X X X None

IF* X X None

FIND/OBTAIN
DB-KEY

All

FIND/OBTAIN
CURRENT*

X X X X All

FIND/OBTAIN
WITHIN SET

X All

FIND/OBTAIN
WITHIN AREA

Xj All

FIND/OBTAIN
OWNER

X All

FIND/OBTAIN
CALC

All

FIND/OBTAIN
DUPLICATE

X All

FIND/OBTAIN
USING SORT
KEY

X All

GET X None

STORE Xk All

MODIFY X Nonel

16-6 CA-ADS Reference

16.2 Navigational DML

Notes:

* Uses only one currency as determined by command format.

j Required for NEXT and PRIOR formats only.

k All in which record type participates as an automatic member.

l Except in the case of a sorted set.

Database
command

Currency updated by successful
execution

Successful execution

Run unit Record Set Area

ERASE X Nullifies of all record
types and sets
involved

CONNECT X X Run unit, set

DISCONNECT X Nullifies currency of
object set; updates
current of run unit
and area

KEEP* X X X X None

COMMIT None

COMMIT ALL Nullifies all
currencies

ROLLBACK Nullifies all
currencies

ROLLBACK
CONTINUE

Nullifies all
currencies

FINISH Nullifies all
currencies

16.2.2 Use of native VSAM data sets

Native VSAM data sets can be defined in a CA-IDMS/DB database schema and
accessed by CA-ADS database commands as if they were standard database files.
CA-IDMS/DB supports all three types of VSAM data sets: key sequenced (KSDS),
entry sequenced (ESDS), and relative record (RRDS).

Existing VSAM data structures are accessed by equating them to CA-IDMS/DB
structures in the schema. The dialog issues standard process command statements for
the equivalent CA-IDMS/DB structures and the DBMS converts these statements to
native VSAM access requests for the appropriate VSAM structures.

Chapter 16. Database Access Commands 16-7

16.2 Navigational DML

When a dialog's subschema includes records in a native VSAM file, process code for
the dialog is affected in the following ways:

■ The set status condition cannot be used with sets defined for native VSAM data
records.

�� For a description of the set status condition, see Chapter 8, “Conditional
Expressions.”

■ Some database commands are affected, as listed below.

The following table lists considerations that apply to specific database commands when
using native VSAM data sets:

Database commands and native VSAM data sets

Command Consideration

ACCEPT DB-KEY RELATIVE TO
CURRENCY

Next, prior, and owner currency cannot be
requested for sets defined for native VSAM
records.

CONNECT The CONNECT command is not allowed
because all sets in native VSAM data sets
must be defined as mandatory automatic.

DISCONNECT The DISCONNECT command is not allowed
because all sets in native VSAM data sets
must be defined as mandatory automatic.

ERASE ERASE record-name is the only form of the
ERASE command that is valid for use with
native VSAM data sets. No form of the
ERASE command is permitted against records
contained in an ESDS.

FIND/OBTAIN DB-KEY The FIND/OBTAIN DB-KEY command
cannot be used to access records in a native
VSAM KSDS because the database key does
not necessarily remain static in a KSDS.

FIND/OBTAIN OWNER The FIND/OBTAIN OWNER command is not
allowed because owner records are not defined
in native VSAM data sets.

FIND/OBTAIN WITHIN
SET/AREA

When an end-of-set or end-of-area condition
occurs, all currencies remain unchanged.

The FIRST, LAST, and sequence-vn WITHIN
AREA options cannot be used to access
spanned data records in a native VSAM data
set.

16-8 CA-ADS Reference

16.2 Navigational DML

Command Consideration

MODIFY The length of a record in an ESDS file cannot
be changed even if the record is variable
length.

The prime key for a KSDS cannot be
modified.

STORE If the object record is to be stored in a native
VSAM RRDS, the DIRECT-DBKEY field
must be initialized with the relative record
number of the record being stored.

 16.2.3 Record locking

Record locks are used to protect the integrity of database records.

Share and exclusive locks: Record locks protect object records from concurrent
access or update by other run units. Locks can be shared or exclusive:

■ Shared record locks allow other run units to access but not update the locked
record.

■ Exclusive record locks prohibit other run units from accessing the locked record
as long as the lock is maintained.

Implicit and explicit record locks: Record locks can be set implicitly by the
CA-IDMS/UCF central version and explicitly by the application developer, as follows:

■ Implicit record locks are maintained automatically for every run unit that
executes in shared update usage mode. Usage modes are discussed in 'READY'
later in this section.

■ Explicit record locks are set by means of a KEEP command or the KEEP clause
of a FIND/OBTAIN command. FIND/OBTAIN is described later in this section.

Long-term explicit record locks are shared or exclusive record locks that are
maintained across run units. A long-term lock placed on a record restricts other
concurrently executing run units from accessing or updating the record until the
lock is explicitly released. Subsequent run units in the same CA-ADS application
that execute from the same terminal can access and update the locked record, and
can upgrade or release the long-term lock.

�� More information about record locks can be found in CA-IDMS Database Design.

The following conditions resulting from the use of record locks can cause abnormal
termination of a CA-ADS application:

■ Too many locks — Abnormal termination of a CA-ADS application occurs if a
run unit tries to generate more record locks than the maximum number specified

Chapter 16. Database Access Commands 16-9

16.2 Navigational DML

at CA-IDMS/UCF system generation. To lessen the possibility of abnormal
termination because of too many locks, a COMMIT command can be used to
release locks.

�� The COMMIT command is described in 16.2.11, “COMMIT” later in this
section.

■ Wait time — Abnormal termination of a CA-ADS application occurs if the
internal wait time of a run unit exceeds the wait interval specified at
CA-IDMS/UCF system generation.

■ Deadlock — Abnormal termination of a run unit occurs when two run units
would cause a deadlock by being permitted to wait to set locks. The run-unit that
would complete the deadlock terminates, control returns to the issuing task, and a
minor code 29 is returned.

An online application can include logic that is invoked if the run unit is
terminated because of a db-key deadlock. In this way, the application can
maintain the terminal session and save data previously entered on the screen. The
application can then ask the user to resubmit the transaction or automatically
restart the run unit, establish currency, and try again.

If the run unit is automatically restarted, the following steps should be followed:

1. Rebind the run unit. CA-ADS automatically starts a new run unit when it
encounters the first functional DML statement.

2. Reestablish currency. If appropriate currencies are not reestablished before
retrying the operation that initially caused the deadlock, a status code of nn06
(no currency established) will be returned.

�� See CA-IDMS Navigational DML Programming for handling the minor code
29.

Checking for deadlock conditions: Deadlock conditions can be checked for
programmatically by using the ALLOWING clause when autostatus is enabled. The
check for a deadlock condition can be made after each service request to the DBMS.

�� The ALLOWING clause is discussed in Chapter 10, “Error Handling.”

More information about record contention can be found in CA-IDMS Database Design.

16.2.4 Suppression of record retrieval locks

Specifications can be made during dialog compilation to indicate whether or not
database record retrieval locks will be held for dialog run units. Retrieval dialogs that
do not update the database and do not pass currencies to update dialogs can be
selectively allowed to access database records without locking those records.

Selectively disabling retrieval locks for dialogs allows:

16-10 CA-ADS Reference

16.2 Navigational DML

■ Elimination of the overhead of maintaining retrieval locks. This decreases the
amount of potential storage and CPU time used by dialogs at runtime.

■ Reduction of the number of db-key deadlocks.

Disabling record retrieval locks: To disable record retrieval locks, you must:

1. Analyze the dialog in the context of the entire application to ensure that control
and currencies are passed appropriately. A dialog with disabled retrieval locks can
pass control and currencies only to a dialog or user program that does retrieval
based on these currencies.

2. Verify the status of the system retrieval locks. If the mandatory retrieval locks
are on, disable the locks at system generation time by specifying RETRIEVAL
NOLOCK in the system generation SYSTEM statement.

�� See CA-IDMS System Generation for additional information.

3. Use the CA-ADS dialog compiler or ADSOBCOM to disable retrieval locking
for appropriate dialogs.

�� The dialog compiler is described in Chapter 2, “CA-ADS Application
Compiler (ADSA).”

ADSOBCOM is described in Appendix D, “Application and Dialog Utilities.”

 Considerations

■ To safeguard the database in the absence of retrieval locks, an update user
program will be aborted when:

– The program receives currencies from a retrieval dialog and attempts an
update DML call.

– The program finishes the current run unit and binds another. The abend
occurs when control is passed back to CA-ADS.

■ The update dialog abends if:

– A higher dialog in the application thread has the RETRIEVAL NOLOCK
indicator set and system-wide RETRIEVAL NOLOCKS are specified.

■ An update dialog or program is allowed to update the retrieval dialog's database
records in the following cases:

– The dialog with retrieval locks turned off readies the area in UPDATE mode.

– The update dialog/program does not receive currencies when control passes to
it.

Updates are allowed because the update dialog/program must ready the
database in UPDATE mode and establish its own currency. The
dialog/program will use record-locking mechanisms and will be assured of
having the most up-to-date data.

Chapter 16. Database Access Commands 16-11

16.2 Navigational DML

The control command options that avoid passing currencies when control is
passed are the TRANSFER command and the NOSAVE clause of the
DISPLAY, INVOKE, and LINK commands.

�� Complete syntax for these commands is given in Chapter 15, “Control
Commands.”

16.2.5 Overview of ACCEPT

The ACCEPT command moves database keys page information and statistics from the
database management system to a dialog's record buffers.

Formats of the ACCEPT command: The ACCEPT command has three formats,
as outlined in the table below.

Note:

The ACCEPT utility command should not be confused with the ACCEPT
database command. The ACCEPT utility command is used to access
information about the current CA-IDMS/UCF task.

For a description of the ACCEPT utility command, see Chapter 20, “Utility
Commands.”

Format Description

ACCEPT DB-KEY FROM CURRENCY Saves the database key of the current
record of run unit, record type, set, or
area

ACCEPT DB-KEY RELATIVE TO
CURRENCY

Saves the database key of the next,
prior, or owner record relative to the
current record of a set

ACCEPT PAGE-INFO Saves the page information of the
record named.

ACCEPT STATISTICS Returns runtime database statistics to
the dialog

16.2.6 ACCEPT DB-KEY FROM CURRENCY

Purpose: Saves the database key of the current record of run unit, record type, set,
or area.

 Syntax

16-12 CA-ADS Reference

16.2 Navigational DML

��─── ACCept DB-KEY into db-key-variable FROM ──┬───────────────┬─────────────�
├─ record name ─┤
├─ set-name ────┤
└─ area-name ───┘

 �─── CURRENCY ───────┬────────────────────┬────── . ─────────────────────────��

└─ error-expression ─┘

 Parameters

ACCept DB-KEY into db-key-variable
Specifies the variable data field to which the database key of the object record is
moved.

Db-key-variable is a PIC S9(8) COMP SYNC.

Db-key-variable must be a binary fullword field that is defined in a record
associated with the dialog.

FROM
Specifies the record whose database key is moved to the field identified by
db-key-variable.

record-name
Saves the database key of the record that is current of the specified record type.

set-name
Saves the database key of the record that is current of the specified set.

area-name
Saves the database key of the record that is current of the specified area.

CURRENCY
Specifies the current record of run unit, record type, set, or area.

If no record, set, or area is specified, CA-ADS saves the database key of the
record that is current of run unit.

error-expression
Specifies the status codes that are returned to the dialog.

�� Error expressions are described in Chapter 10, “Error Handling.”

 Usage:

Definition: The ACCEPT DB-KEY FROM CURRENCY command is used to move
the database key of the current record of run unit, record type, set, or area to a
specified location in a dialog's record buffers. A subsequent FIND/OBTAIN DB-KEY
command can use the saved database key to access the record directly.
FIND/OBTAIN DB-KEY is described later in this section.

Note: You must establish currency before using this statement. If no currency
 has been established, the DBMS returns 0000 to the ERROR-STATUS
 field and -1 to the db-key field.

Chapter 16. Database Access Commands 16-13

16.2 Navigational DML

Considerations: If autostatus is not in use, a dialog's error-status field indicates the
outcome of an ACCEPT DB-KEY FROM CURRENCY command:

�� The autostatus facility is described in Chapter 10, “Error Handling.”

Example: The statements in the following example establish a PRODUCT record as
current of run unit and save the record's database key in the field SAVE-DB-KEY:

MOVE 769H157 TO PROD-NUMBER.

FIND CALC PRODUCT.

ACCEPT DB-KEY INTO SAVE-DB-KEY FROM CURRENCY.

Status code Meaning

0000 The request was executed successfully

1508 The object record is not in the dialog's subschema

16.2.7 ACCEPT DB-KEY RELATIVE TO CURRENCY

Purpose: Saves the database key of the next, prior, or owner record relative to the
current record of a set.

 Syntax

��─── ACCept DB-KEY into db-key-variable FROM set-name ───────────────────────�

 �─┬─ NEXT ──┬───── CURRENCY ──────┬────────────────────┬────── . ────────────��

├─ PRIOR ─┤ └─ error-expression ─┘
└─ OWNER ─┘

 Parameters

ACCept DB-KEY into db-key-variable
Specifies the variable data field to which the database key of the object record is
moved.

Db-key-variable is a PIC S9(8) COMP SYNC.

Db-key-variable must be a binary fullword field that is defined in a record
associated with the dialog.

FROM set-name
Specifies the record whose database key is moved to the field identified by
db-key-variable.

Set-name must be known to the dialog's subschema.

NEXT
Saves the database key of the next record relative to the current record of the
specified set.

16-14 CA-ADS Reference

16.2 Navigational DML

A request for NEXT CURRENCY cannot be specified unless the object set
has prior pointers, which ensure that the next pointer in the prefix of the
current record does not point to a logically deleted record.

PRIOR
Saves the database key of the prior record relative to the current record of the
specified set.

A request for PRIOR CURRENCY cannot be specified unless the object set
has prior pointers.

Note: No indication of an end-of-set condition is possible for an ACCEPT
NEXT or ACCEPT PRIOR command. A retrieval command must be
issued to determine whether the next or prior record in the specified
set is the owner record.

OWNER
Saves the database key of the owner of the current record of the specified set.

A request for OWNER CURRENCY cannot be specified unless the object set
has owner pointers. If the current record is the owner of the specified set, a
request for OWNER CURRENCY returns the database key of the current
record, even if the set does not have owner pointers.

CURRENCY
Specifies the current record of run unit, record type, set, or area.

error-expression
Specifies the status codes that are returned to the dialog.

�� Error expressions are described in Chapter 10, “Error Handling.”

 Usage:

Definition: The ACCEPT DB-KEY RELATIVE TO CURRENCY command is used
to move the database key of the next, prior, or owner record relative to the current
record of set to a specified location in a dialog's record buffers.

This command allows a process to save the database key of a record without accessing
the record itself. A subsequent FIND/OBTAIN DB-KEY command can use the saved
database key to access the record directly. FIND/OBTAIN DB-KEY is described later
in this section.

Note: You must establish currency before using this statement. If no set currency
has been established, the DBMS returns 0000 to the ERROR-STATUS field
and -1 to the db-key field.

Note: NEXT, PRIOR, and OWNER CURRENCY cannot be requested for sets
defined for native VSAM records.

If autostatus is not in use, a dialog's error-status field indicates the outcome of an
ACCEPT DB-KEY RELATIVE TO CURRENCY command:

Chapter 16. Database Access Commands 16-15

16.2 Navigational DML

�� The autostatus facility is described in Chapter 10, “Error Handling.”

Example: The statements in the following example establish a current ITEM record
and save the database key of the owner record of the PRODUCT-ITEM set in the field
SAVE-KEY:

MOVE 123H4H7 TO ORD-NUMBER.

FIND CALC ORDOR.

FIND NEXT WITHIN ORDER-ITEM.

ACCEPT DB-KEY INTO SAVE-KEY FROM PRODUCT-ITEM OWNER CURRENCY.

Status code Meaning

0000 The request was executed successfully

1506 Currency was not established for the object set

1508 The object record is not in the dialog's subschema

 16.2.8 ACCEPT PAGE-INFO

Purpose: The ACCEPT PAGE-INFO statement moves the page information for a
given record to a specified location in program variable storage. Page information that
is saved in this manner is available for subsequent direct access by using a
FIND/OBTAIN DB-KEY statement.

The dbkey radix portion of the page information can be used in interpreting a dbkey
for display purposes and in formatting a dbkey from page and line numbers. The
dbkey radix represents the number of bits within a dbkey value that are reserved for
the line number of a record. By default, this value is 8, meaning that up to 255 records
can be stored on a single page of the area. Given a dbkey, you can separate its
associated page number by dividing the dbkey by 2 raised to the power of the dbkey
radix. For example, if the dbkey radix is 4, you would divide the dbkey value by 2**4.
The resulting value is the page number of the dbkey. To separate the line number, you
would multiply the page number by 2 raised to the power of the dbkey radix and
subtract this value from the dbkey value. The result would be the line number of the
dbkey. The following two formulas can be used to calculate the page and line numbers
from a dbkey value:

■ Page-number = dbkey value / (2 ** dbkey radix)

■ Line-number = dbkey value - (page-number * (2 ** dbkey radix))

 Syntax

��─ ACCept PAGE-INFO into page-info-variable FOR record-name ────────────────�

 �─┬────────────────────┬──��

└─ error-expression ─┘

 Parameters

16-16 CA-ADS Reference

16.2 Navigational DML

ACCEPT PAGE-INFO into page-info-variable
Specifies the variable data field to which the page info of the named record is
moved.

page-info-variable
A four-byte field that may be defined either as a group field or as a fullword field
(PIC S9(8) COMP). Identifies the variable data field to contain the page
information for the specified record. Upon successful completion of this statement,
the first two bytes of the field contain the page group number and the last two
bytes contain a value that may be used for interpreting dbkeys.

FOR record-name

record-name
Specifies the record whose page information will be placed in the specified
location (page-info-variable).

Note: Page information is only used if the subschema includes areas that have
mixed page groups; otherwise it is ignored.

Status codes: If autostatus is not in use, a dialog's error-status field indicates the
outcome of an ACCEPT-PAGE-INFO command:

Example: The following example retrieves the page information for the
DEPARTMENT record.

H1 W-PG-INFO.

H2 W-GRP-NUM PIC S9(4) COMP.

H2 W-DBK-FORMAT PIC 9(4) COMP.

ACCEPT PAGE-INFO into W-PG-INFO FOR DEPARTMENT.

Status code Meaning

0000 The request has been serviced
successfully.

1508 The named record is not in the
subschema. The program probably
invoked the wrong subschema.

 16.2.9 ACCEPT STATISTICS

Purpose: Returns runtime database statistics to the dialog.

 Syntax

��──── ACCept ─┬─ STATISTICS ─┬── into db-statistics-variable ────────────────�
└─ STATS ──────┘

 �─── FROM IDMS-STATISTICS ─── . ───��

 Parameters

Chapter 16. Database Access Commands 16-17

16.2 Navigational DML

ACCept STATISTICS
Introduces the variable data field to which the database key of the object record is
moved.

STATS can be used in place of STATISTICS.

into db-statistics-variable
The name of the location in the dialog's record buffers where the runtime statistics
contained in the CA-IDMS statistics block are to be moved.

A fullword aligned, 100-byte system supplied statistics block shown below:

H1 DB-STATISTICS

 H3 DATE-TODAY PIC X(8).

 H3 TIME-TODAY PIC X(8).

 H3 PAGES-READ PIC S9(8) COMP.

 H3 PAGES-WRITTEN PIC S9(8) COMP.

 H3 PAGES-REQUESTED PIC S9(8) COMP.

 H3 CALC-TARGET PIC S9(8) COMP.

 H3 CALC-OVERFLOW PIC S9(8) COMP.

 H3 VIA-TARGET PIC S9(8) COMP.

 H3 VIA-OVERFLOW PIC S9(8) COMP.

 H3 LINES-REQUESTED PIC S9(8) COMP.

 H3 RECS-CURRENT PIC S9(8) COMP.

 H3 CALLS-TO-IDMS PIC S9(8) COMP.

 H3 FRAGMENTS-STORED PIC S9(8) COMP.

 H3 RECS-RELOCATED PIC S9(8) COMP.

 H3 LOCKS-REQUESTED PIC S9(8) COMP.

 H3 SEL-LOCKS-HELD PIC S9(8) COMP.

 H3 UPD-LOCKS-HELD PIC S9(8) COMP.

 H3 RUN-UNIT-ID PIC S9(8) COMP.

 H3 TASK-ID PIC S9(8) COMP.

 H3 LOCAL-ID PIC X(8).

 H3 FILLER PIC X(8).

Note: Record DB-STATISTICS is defined in the dictionary when CA-IDMS is
installed and can be included as a dialog work record.

�� For a description of the CA-IDMS statistics block, refer to CA-IDMS Database
Administration.

The LOCAL-ID field consists of the 4-byte identifier of the interface in which the
run unit originated (in CA-ADS, it is always DBDC) and a unique identifier (a
fullword binary value) assigned to the run unit by that interface. To display the
originating interface identifier and the run-unit identifier, the LOCAL-ID field can
be moved to a work field that is defined as follows:

H1 WORK-LOCAL-ID

 H2 WORK-LOCAL-ORIGIN PIC X(4).

 H2 WORK-LOCAL-NUMBER PIC S9(8) COMP.

Alternatively, the DB-STATISTICS record can be modified to define two
subordinate fields for the LOCAL-ID field.

 Usage:

Definition: The ACCEPT STATISTICS command is used to move runtime statistics
in the CA-IDMS statistics block to a dialog's record buffers. An ACCEPT
STATISTICS command does not reset fields in the CA-IDMS statistics block. The
fields are initialized at the beginning of a run unit. The only acceptable status code
returned for an ACCEPT STATISTICS command is 0000.

16-18 CA-ADS Reference

16.2 Navigational DML

Example: The statements in the following example:

■ Establish currency for the sets in which a new ITEM record will participate as a
member

■ Store the ITEM record

■ Move statistics regarding the stored ITEM record to the SAVE-STATS field in the
dialog's record buffers

 Sample Statements:

MOVE IN-PROD-NUMBER TO PROD-NUMBER.

FIND CALC PRODUCT.

MOVE IN-ORD-NUMBER TO ORD-NUMBER.

FIND CALC ORDOR.

STORE ITEM.

ACCEPT STATS INTO SAVE-STATS FROM IDMS-STATISTICS.

 16.2.10 BIND PROCEDURE

Purpose: Establishes communication between a dialog and a DBA-written
procedure.

 Syntax:

��─── BIND PROCedure for procedure-name TO ───────────────────────────────────�

 �─── procedure-control-location ────┬────────────────────┬─── . ─────────────��
└─ error-expression ─┘

 Parameters

BIND PROCedure for procedure-name
Provides the name of the database procedure.

Procedure-name is either the name of an 8-character variable field that contains
the procedure name or the procedure name itself enclosed in single quotation
marks.

TO procedure-control-location
Specifies the location to which the named procedure is bound.
Procedure-control-location specifies a 256-byte, fixed-length area.

When the BIND PROCEDURE command is executed, information specified in the
CA-IDMS application program information block is copied into
procedure-control-location. At runtime, this information is copied from
procedure-control-location back into the CA-IDMS application program
information block each time the DBMS invokes the procedure. The information
passed at runtime is not the information in storage at the time of the procedure
call.

error-expression
Specifies status codes that are returned to the dialog.

�� Error expressions are described in Chapter 10, “Error Handling.”

Chapter 16. Database Access Commands 16-19

16.2 Navigational DML

 Usage:

Definition: This statement should be used when the application must pass more
information to the procedure than that provided by the DBMS. Such instances are
unusual.

In most cases, procedures that gain control before or after various database functions
are not apparent. After the BIND PROCEDURE command is executed, the DBMS
automatically invokes the named procedure for the operations specified in the schema
definition.

�� See CA-IDMS Database Administration for more information about database
procedures.

Considerations: If autostatus is not in use, a dialog's error-status field indicates the
outcome of a BIND PROCEDURE command:

Example: In the example below, the BIND PROCEDURE command is used to bind
the procedure PROGCHEK to the 256-byte area PROC-CTL.

BIND PROCEDURE FOR 'PROGCHEK' TO PROC-CTL.

Status code Meaning

0000 The request was executed successfully

1408 The named record or procedure was not in the specified
subschema.

1418 The procedure was improperly bound to location 0

1472 The available memory to load a module from the load (core-image)
library or DDLDCLOD was not sufficient

1474 An attempt to load a module from the load (core-image) library or
DDLDCLOD failed

 16.2.11 COMMIT

Purpose: Ends the current recovery unit and makes permanent any changes made to
the database data during the current recovery unit.

 Syntax:

��─── COMMIT ───┬────────┬───┬───────┬── . ───────────────────────────────────��

└─ TASK ─┘ └─ ALL ─┘

 Parameters

TASK
COMMIT TASK writes a checkpoint to the CA-IDMS/DB journal file and
updates the subschema control block for all database, queue, and scratch records

16-20 CA-ADS Reference

16.2 Navigational DML

associated with run units that have been implicitly established for the issuing
dialog. All record locks except those held on current records are released.

If TASK is not specified, only database records are the objects of the COMMIT
command.

ALL
Releases all record locks, including those held on current records, and sets all
currencies to null.

Note: The COMMIT command does not release long-term locks held on
database records.

 Usage:

Definition: The COMMIT command is used to write a checkpoint to the
CA-IDMS/DB journal file and to release record locks held on database, queue, and
scratch records. The checkpoints mark the beginning or end of specific database,
queue, and scratch area activities within the issuing dialog. The release of record
locks lessens the possibility of abnormal termination resulting from too many locks.

The CA-ADS runtime system automatically writes a checkpoint to the CA-IDMS/DB
journal file at the beginning and end of a run unit. Additional checkpoints can be
written to the journal file by using the COMMIT command.

�� For a discussion of CA-ADS run units, see Chapter 4, “CA-ADS Runtime
System.”

Considerations: If autostatus is not in use, a dialog's error-status field indicates the
outcome of a COMMIT command:

�� The autostatus facility is described in Chapter 10, “Error Handling.”

Status code Meaning

0000 The request was executed successfully

5031 The request is invalid, possibly due to a logic error in the process

5096 Too many run units exist for the internal run-unit table

5097 An invalid status was received from DBIO. Check the
CA-IDMS/UCF system log for details

Chapter 16. Database Access Commands 16-21

16.2 Navigational DML

 16.2.12 CONNECT

Purpose: Establishes a record occurrence as a member in a set occurrence.

Participation of records in sets is governed by the membership options defined for each
set in the subschema, as shown below.

 Syntax:

��─── CONNECT record-name TO set-name ───┬────────────────────┬──── . ────────��
└─ error-expression ─┘

 Parameters

record-name
Specifies the current occurrence of the named record to be connected with the
current occurrence of the set specified by set-name.

Record-name must be known to the dialog's subschema.

TO set-name
Specifies the set to which the current occurrence of the named record is
connected.

Set-name must be known to the dialog's subschema and must be defined as
optional automatic, optional manual, or mandatory manual.

The record is connected to the current occurrence of the named set in the order
specified for the set in the schema.

error-expression
Specifies the status codes that are returned to the dialog.

�� Error expressions are described in Chapter 10, “Error Handling.”

 Usage:

Membership option Description

Automatic Membership is established automatically when a record is
stored.

Manual Membership is not established automatically. A record is
established as a member of the set by using the CONNECT
command.

Mandatory Records remain members of the set until they are erased.

Optional Records remain members of the set until they are erased or
disconnected. For information on erasing or disconnecting a
record, see 'ERASE' and 'DISCONNECT' later in this
section.

16-22 CA-ADS Reference

16.2 Navigational DML

Considerations: If autostatus is not in use, a dialog's error-status field indicates the
outcome of a CONNECT command:

�� The autostatus facility is described in Chapter 10, “Error Handling.”

 Further considerations

■ The object set in a CONNECT command must be defined as optional automatic,
optional manual, or mandatory manual.

■ The CONNECT command cannot be used with native VSAM data sets because all
such sets must be defined as mandatory automatic.

■ Before a CONNECT command can be executed, the following conditions must be
satisfied:

– All areas affected either directly or indirectly by the CONNECT command
must be readied in an update usage mode.

�� Usage modes are discussed in 16.2.26, “READY” later in this section.

– The object record must be established as current of its record type.

– The applicable set occurrence must be established by the current record of set.
If set order is NEXT or PRIOR, the current record of set also determines the
position at which the object record is connected within the set.

Status code Meaning

0000 The request was executed successfully

0705 The CONNECT command violates a duplicates-not-allowed option
for a CALC, sorted, or index set

0706 Currency was not established for the object record or set

0708 The object record is not in the dialog's subschema

0709 The object record's area was not readied in an update usage mode

0710 The dialog's subschema specifies an access restriction that prohibits
connecting the object record to the named set

0714 The CONNECT command cannot be executed because the object
set was defined as mandatory automatic

0716 The CONNECT command cannot be executed because the object
record is already a member of the named set

0721 An area other than the area of the object record was readied with
an incorrect usage mode

0729 A run-unit deadlock condition occurred. DBMS aborted and rolled
back the run unit. All resources associated with the task are
released

Chapter 16. Database Access Commands 16-23

16.2 Navigational DML

■ After successful execution of the CONNECT command, the object record is
current of:

– The run unit

– Its record type

 – Its area

– All sets in which the record currently participates

Example: The statements in the following example establish currency for the ITEM
and PRODUCT record types, and connect the current ITEM record to the set
occurrence established by the current PRODUCT record:

MOVE 'BB' TO ORD-NUMBER.

FIND CALC ORDOR.

OBTAIN FIRST WITHIN ORDER-ITEM.

MOVE ITEM-PROD-NUMBER TO PROD-NUMBER.

FIND CALC PRODUCT.

CONNECT ITEM TO PRODUCT-ITEM.

16-24 CA-ADS Reference

16.2 Navigational DML

 16.2.13 DISCONNECT

Purpose: Disconnects a record occurrence from a set occurrence in which it
participates as a member.

Membership in the object set must be defined as OPTIONAL in the dialog's schema.

 Syntax:

��─── DISCONNECT record-name FROM set-name ───┬────────────────────┬──── . ───��
└─ error-expression ─┘

 Parameters

record-name
Specifies the current occurrence of the named record to be disconnected.

Record-name must be known to the dialog's subschema.

FROM set-name
Specifies the set from which the current occurrence of the named record is to be
disconnected.

Set-name must be known to the dialog's subschema and must be defined as
optional.

�� Set membership options are described in 16.2.12, “CONNECT” above.

error-expression
Specifies the status codes that are returned to the dialog.

�� Error expressions are described in Chapter 10, “Error Handling.”

 Usage:

Considerations: If autostatus is not in use, a dialog's error-status field indicates the
outcome of a DISCONNECT command:

Status code Meaning

0000 The request was executed successfully

1106 Currency was not established for the object record

1108 The specified record is not in the dialog's subschema

1109 The object record's area was not readied in an update usage mode

1110 The dialog's subschema specifies an access restriction that prohibits
disconnecting the object record from the named set

1115 The DISCONNECT command cannot be executed because the
object set is defined as mandatory

Chapter 16. Database Access Commands 16-25

16.2 Navigational DML

�� The autostatus facility is described in Chapter 10, “Error Handling.”

 Further considerations

■ The DISCONNECT command cannot be used with native VSAM data sets
because all such sets must be defined as mandatory automatic.

■ Before a DISCONNECT command can be executed, the following conditions must
be satisfied:

– All areas affected either directly or indirectly by the DISCONNECT command
must be readied in an update usage mode.

�� Usage modes are discussed in 16.2.26, “READY” later in this section.

– The object record must be established as current of its record type.

■ After successful execution of a DISCONNECT command, the object record can no
longer be accessed through the set for which membership was canceled.

■ A disconnected record can be accessed through any other sets in which it
participates as a member or through its CALC key if it has a location mode of
CALC.

■ A disconnected record is always accessible by means of an area search or through
its database key.

■ A DISCONNECT command nullifies currency in the object set. However, the
next of set and prior of set are maintained, enabling access to continue within the
set.

■ A disconnected record becomes current of:

– The run unit

– Its record type

 – Its area

Example: The statements in the following example establish an ITEM record as
current of record type and disconnect the record from the PRODUCT-ITEM set:

Status code Meaning

1121 An area other than the area of the object record was readied with
an incorrect usage mode

1122 The object record is not currently a member of the specified set

1129 A run-unit deadlock condition occurred. DBMS aborted and rolled
back the run unit. All resources associated with the task are
released

16-26 CA-ADS Reference

16.2 Navigational DML

MOVE 'P8' TO PROD-NUMBER.

FIND CALC PRODUCT.

FIND FIRST ITEM WITHIN PRODUCT-ITEM.

DISCONNECT ITEM FROM PRODUCT-ITEM.

 16.2.14 ERASE

Purpose: Deletes a record from the database.

 Syntax:

��─── ERASE record-name ────┬──────────────────────────┬──────────────────────��
└┬─ PERMANENT ─┬─ MEMBERS ─┘

├─ SELECTIVE ─┤

└─ ALL ───────┘

 �───────┬────────────────────┬───────── . ───────────────────────────────────��

└─ error-expression ─┘

 Parameters

record-name
Erases the current occurrence of the named record from the database.

Record-name must be known to the dialog's subschema and must be current of run
unit.

Note: Native VSAM users — ERASE record-name is the only form of the
ERASE statement valid for records in a native VSAM KSDS or RRDS; no
form of the ERASE statement is allowed for a native VSAM ESDS.

PERMANENT
Specifies the named record and all mandatory member record occurrences owned
by the record to be erased. Optional member records are disconnected.

An erased mandatory member record that is itself the owner of any set
occurrences is also treated as the direct object of an ERASE PERMANENT
command (that is, all mandatory members in the sets owned by the record are also
erased).

SELECTIVE
Specifies the named record and all mandatory member record occurrences owned
by the record to be erased. Optional member records are erased if they do not
currently participate as members in other set occurrences.

An erased member record that is itself the owner of any set occurrences is also
treated as the direct object of an ERASE SELECTIVE command.

ALL
Specifies the named record, all mandatory and optional member record
occurrences owned by the record to be erased.

An erased member record that is itself the owner of any set occurrences is also
treated as the direct object of an ERASE ALL command.

Chapter 16. Database Access Commands 16-27

16.2 Navigational DML

MEMBERS
Must be specified if the record identified by record-name is the owner of any
nonempty set occurrences.

error-expression
Specifies the status codes that are returned to the dialog.

�� Error expressions are described in Chapter 10, “Error Handling.”

 Usage

Definition: Erasure is a two-step process that first cancels a record's membership in
any set occurrences and then releases for reuse the space occupied by the record.

The ERASE command performs the following functions:

■ Erases the object record from the database

■ Erases all records that are mandatory members of set occurrences owned by the
object record

■ Disconnects or erases all records that are optional members of set occurrences
owned by the object record

Considerations: If autostatus is not in use, a dialog's error-status field indicates the
outcome of an ERASE command:

Status code Meaning

0000 The request was executed successfully

0206 Currency was not established for the object record

0209 The object record's area was not readied in an update usage mode

0210 The dialog's subschema specifies an access restriction that prohibits
use of the ERASE command.

0213 Run-unit currency was not established or was nullified by a
previous ERASE command

0220 The current record of run unit is not the same type as the specified
record

0221 An area other than the area of the object record was readied with
an incorrect usage mode

0225 Currency was not established for the object record or set

0229 A run-unit deadlock condition occurred. DBMS aborted and rolled
back the run unit. All resources associated with the task are
released

0230 An attempt was made to erase the owner of a nonempty set

16-28 CA-ADS Reference

16.2 Navigational DML

�� The autostatus facility is described in Chapter 10, “Error Handling.”

 Further considerations:

■ Before an ERASE command can be executed, the following conditions must be
satisfied:

– All areas either directly or indirectly affected by the ERASE command must
be readied in an update usage mode.

�� Usage modes are discussed in 16.2.26, “READY” later in this section.

– All sets in which the object record participates as owner either directly or
indirectly (for example, a set whose owner is a member of a set owned by the
object record) and all member record types in those sets must be included in
the dialog's subschema.

– The object record must be established as current of run unit.

■ An ERASE command nullifies the CURRENT pointer for all record types
involved in the erase and for all sets in which erased records participate. Run-unit
and area currencies remain unchanged.

■ The next of set and prior of set are maintained when walking the set occurrence of
an erased record, whether or not prior pointers have been defined for the sets.

■ Erased records are not available for further processing. An attempt to retrieve an
erased record results in an error condition.

■ Next, prior, and owner pointers are preserved for the last occurrence of each
record type erased. This enables access to the next or prior record within the area,
or the next, prior, or owner records within the sets in which the erased record
participated.

Status code Meaning

0233 Erasure of the object record is not allowed by the dialog's
subschema, or not all sets in which the object record participates
are included in the subschema

Chapter 16. Database Access Commands 16-29

16.2 Navigational DML

16.2.15 Overview of FIND/OBTAIN

The FIND command is used to locate a record occurrence in the database. The
OBTAIN command is used to locate a record and move the data associated with the
record to a dialog's record buffers. Because the FIND and OBTAIN command
statements have identical formats, they are discussed together.

There are six formats of the FIND/OBTAIN statement, as outlined below.

Formats of the FIND/OBTAIN statement

 Considerations

■ Locks can be placed on located record occurrences by using the KEEP clause of a
FIND/OBTAIN statement. The KEEP clause sets a shared or exclusive lock.

– KEEP places a shared lock on the located record occurrence. Other
concurrently executing run units can access but not update the locked record.

– KEEP EXCLUSIVE places an exclusive lock on the located record
occurrence. Other concurrently executing run units can neither access nor
update the locked record.

Format Description

FIND/OBTAIN CALC Accesses a record occurrence by using its
CALC key value

FIND/OBTAIN CURRENT Accesses a record occurrence by using
established currencies

FIND/OBTAIN DB-KEY Accesses a record occurrence by using its
database key

FIND/OBTAIN OWNER Accesses the owner record of a set
occurrence

FIND/OBTAIN WITHIN SET/AREA Accesses a record occurrence based on its
logical location within a set or on its
physical location within an area

FIND/OBTAIN WITHIN SET USING
SORT KEY

Accesses a record occurrence in a sorted
set by using its sort key value

16-30 CA-ADS Reference

16.2 Navigational DML

 16.2.16 FIND/OBTAIN CALC

Purpose: Accesses a record based on the value of the record's CALC key.

 Syntax:

��──┬─ FIND ───┬───┬──────────────────────────┬───────────────────────────────�

└─ OBTAIN ─┘ └─ KEEP ───┬─────────────┬─┘

└─ EXCLUSIVE ─┘

 �──┬─┬─ CALC ─┬──┬──── record-name ────┬────────────────────┬── . ───────────��
│ └─ ANY ──┘ │ └─ error-expression ─┘
└─ DUPLICATE ─┘

 Parameters

KEEP
Places a shared lock on the object record.

EXCLUSIVE
Places an exclusive lock on the object record.

CALC
Accesses the first or only occurrence of the named record type whose CALC key
value matches the value of the CALC data item in the dialog's record buffer.

ANY can be used in place of CALC.

DUPLICATE
Accesses the next occurrence of the named record type with the same CALC key
value as the current record of run unit. Use of the DUPLICATE option requires
previous access to an occurrence of the same record type by means of the CALC
option.

record-name
Specifies the name of the record being accessed.

Record-name must be known to the dialog's subschema.

error-expression
Specifies the status codes that are returned to the dialog.

�� Error expressions are described in Chapter 10, “Error Handling.”

 Usage:

Considerations: If autostatus is not in use, a dialog's error-status field indicates the
outcome of a FIND/OBTAIN CALC command:

Status code Meaning

0000 The request was executed successfully

Chapter 16. Database Access Commands 16-31

16.2 Navigational DML

�� The autostatus facility is described in Chapter 10, “Error Handling.”

 Further considerations

■ The object record must be stored in the database with a location mode of CALC.

■ Before a FIND/OBTAIN CALC command is issued, the CALC key value of the
object record must be placed in the applicable field of the dialog's record buffer.

■ After successful execution of a FIND/OBTAIN CALC command, the accessed
record is current of:

– The run unit

– Its record type

 – Its area

– All sets in which it currently participates as member or owner

Example: The statements in the following example initialize the CALC key field in
a dialog's ORDOR record buffer and retrieve the specified occurrence of the ORDOR
record:

MOVE IN-ORDER-NUMBER TO ORD-NUMBER.

OBTAIN CALC ORDOR.

Status code Meaning

0306 Currency was not established for the object record (applies to the
DUPLICATE option only)

0308 The object record is not in the dialog's subschema

0310 The dialog's subschema specifies an access restriction that prohibits
retrieval of the object record

0326 The specified record cannot be found

0329 A run-unit deadlock condition occurred. DBMS aborted and rolled
back the run unit. All resources associated with the task are
released

0331 The object record was not defined with a location mode of CALC

0332 The value of the CALC data item in the dialog's record buffer does
not equal the value of the CALC data item in the current record of
run unit (applies to DUPLICATE option only)

16-32 CA-ADS Reference

16.2 Navigational DML

 16.2.17 FIND/OBTAIN CURRENT

Purpose: Accesses a record that is current of run unit, current of the record's record
type or area, or current of any set in which the record participates as member or
owner.

 Syntax

��──┬─ FIND ───┬───┬──────────────────────────┬───────────────────────────────�

└─ OBTAIN ─┘ └─ KEEP ───┬─────────────┬─┘

└─ EXCLUSIVE ─┘

 �──── CURRENT ───┬────────────────────┬────┬────────────────────┬── . ───────��

├─ record name ──────┤ └─ error-expression ─┘
├─ WITHIN set-name ─┤

└─ WITHIN area-name ─┘

 Parameters

KEEP
Places a shared lock on the object record.

EXCLUSIVE
Places an exclusive lock on the object record.

CURRENT
Accesses the record occurrence that is current of run unit.

record-name
Specifies the current occurrence of the named record to be accessed.

WITHIN set-name
Specifies the current occurrence of the named set to be accessed.

WITHIN area-name
Specifies the current occurrence of the named area to be accessed.

The named record, set, or area must be known to the dialog's subschema.

error-expression
Specifies the status codes that are returned to the dialog.

�� Error expressions are described in Chapter 10, “Error Handling.”

Usage: FIND/OBTAIN CURRENT is an efficient means of establishing a record as
current of run unit before executing a command that uses run-unit currency (for
example, ERASE, GET, or MODIFY).

After successful execution of a FIND/OBTAIN CURRENT command, the accessed
record is current of:

 ■ Run unit

 ■ Record type

 ■ Area

Chapter 16. Database Access Commands 16-33

16.2 Navigational DML

■ All sets in which the record participates as member or owner

Considerations: If autostatus is not in use, a dialog's error-status field indicates the
outcome of a FIND/OBTAIN CURRENT command:

�� The autostatus facility is described in Chapter 10, “Error Handling.”

Example: The statements in the following example establish an ITEM record as
current of run-unit before issuing a command that requires run-unit currency:

MOVE 'BB' TO ORD-NUM.

OBTAIN CALC ORDOR.

OBTAIN FIRST ITEM WITHIN ORDER-ITEM.

OBTAIN OWNER WITHIN PRODUCT-ITEM.

OBTAIN CURRENT ITEM.

MODIFY ITEM.

The object ITEM record becomes current of run unit following the third statement.
The fourth statement establishes the owner PRODUCT record as current of run unit.
The OBTAIN CURRENT statement reestablishes the ITEM record as current of run
unit.

Status code Meaning

0000 The request was executed successfully

0306 Currency was not established for the named record, set, or area

0308 The object record is not in the dialog's subschema

0310 The dialog's subschema specifies an access restriction that prohibits
retrieval of the object record

0313 Run-unit currency was not established or was nullified by a
previous ERASE command

0323 The named area is not in the dialog's subschema

0329 A run-unit deadlock condition occurred. DBMS aborted and rolled
back the run unit. All resources associated with the task are
released

 16.2.18 FIND/OBTAIN DB-KEY

Purpose: Accesses a record occurrence directly by using a database key that is
stored in a field in a dialog's record buffers.

Any record in a dialog's subschema can be accessed in this manner, regardless of its
location mode.

 Syntax

16-34 CA-ADS Reference

16.2 Navigational DML

��─┬─ FIND ───┬─┬────────────────────────┬───────────────────────────────────�

└─ OBTAIN ─┘ └─ KEEP ─┬─────────────┬─┘

└─ EXCLUSIVE ─┘

 �─┬─ DB-KEY ─┬──────┬─ db-key-variable ─┬──────────────────────┬─┬──────────�

│ ├─ IS ─┤ └─ page-specification ─┘ │

│ └─ = ──┘ │

└─┬───────────────┬─ DB-KEY ─┬──────┬─ db-key-variable ────────┘

└─ record name ─┘ ├─ IS ─┤

└─ = ──┘

 �─┬────────────────────┬──��

└─ error-expression ─┘

Expansion of page-specification

��─┬───┬────────────────────────��

└─ PAGE-INFO ─┬──────┬─ page-info-variable ─┘

├─ IS ─┤

└─ = ──┘

 Parameters

KEEP
Places a shared lock on the object record.

EXCLUSIVE
Places an exclusive lock on the object record.

record-name
Specifies the name of the record to be accessed using the database key value
contained in db-key-variable.

If specified, record-name must be known to the dialog's subschema.

DB-KEY IS db-key-variable
Specifies the binary fullword in the dialog's record buffers that contains a
previously saved database key. If record-name is specified, db-key-variable must
contain the database key of an occurrence of the named record type. If
record-name is not specified, db-key-variable can contain the database key of an
occurrence of any record type in the dialog's subschema.

Db-key-variable is a PIC S9(8) COMP SYNC.

IS or = are optional keywords and have no effect on processing.

PAGE-INFO
Specifies page information that is used to determine the area with which the dbkey
is associated. If not specified, the page information associated with the record that
is current of rununit is used.

Note: Page information is only used if the subschema includes areas that have
mixed page groups; otherwise, it is ignored.

page-info-variable
A four-byte field that may be defined either as a group field or as a fullword field
(PIC S9(8) COMP). Identifies the location in variable storage that contains the
page information previously saved by the program.

Chapter 16. Database Access Commands 16-35

16.2 Navigational DML

Page information is returned in the PAGE-INFO field in the subschema control
area if the subschema includes areas in mixed page groups. Page information may
also be returned using an ACCEPT PAGE-INFO statement.

error-expression
Specifies the status codes that are returned to the dialog.

�� Error expressions are described in Chapter 10, “Error Handling.”

 Usage:

Considerations: If autostatus is not in use, a dialog's error-status field indicates the
outcome of a FIND/OBTAIN DB-KEY command:

�� The autostatus facility is described in Chapter 10, “Error Handling.”

 Further considerations

■ FIND/OBTAIN DB-KEY cannot be used to access data records in a native VSAM
KSDS.

■ After successful execution of a FIND/OBTAIN DB-KEY command, the accessed
record is current of the run unit, its record type, its area, and all sets in which it
currently participates as member or owner.

Example: The following example illustrates the use of the FIND DB-KEY command
to locate an occurrence of the ITEM record whose database key matches the value in a
field called SAVED-KEY:

FIND ITEM DB-KEY IS SAVED-KEY.

Status code Meaning

0000 The request was executed successfully

0302 The database key value is inconsistent with the area in which the
named record is stored. Either the database key was not initialized
properly or the record name is incorrect

0308 The object record is not in the dialog's subschema

0310 The dialog's subschema specifies an access restriction that prohibits
retrieval of the named record

0326 The specified record cannot be found

0329 A run-unit deadlock condition occurred. DBMS aborted and rolled
back the run unit. All resources associated with the task are
released

0371 The specified database key does not correspond to a database page

16-36 CA-ADS Reference

16.2 Navigational DML

 16.2.19 FIND/OBTAIN OWNER

Purpose: Accesses the owner record of the current occurrence of a set.

 Syntax:

��──┬─ FIND ───┬───┬──────────────────────────┬───────────────────────────────�

└─ OBTAIN ─┘ └─ KEEP ───┬─────────────┬─┘

└─ EXCLUSIVE ─┘

 �──── OWNER WITHIN set-name ───┬────────────────────┬─── . ──────────────────��
└─ error-expression ─┘

 Parameters

KEEP
Places a shared lock on the object record.

EXCLUSIVE
Places an exclusive lock on the object record.

OWNER WITHIN set-name
Specifies the set whose owner record is to be retrieved.

Set-name must be known to the dialog's subschema.

error-expression
Specifies the status codes that are returned to the dialog.

�� Error expressions are described in Chapter 10, “Error Handling.”

 Usage:

Considerations: If autostatus is not in use, a dialog's error-status field indicates the
outcome of a FIND/OBTAIN OWNER command:

�� The autostatus facility is described in Chapter 10, “Error Handling.”

Status code Meaning

0000 The request was executed successfully

0306 Currency was not established for the named record, set, or area

0308 The object record is not in the dialog's subschema

0310 The dialog's subschema specifies an access restriction that prohibits
retrieval of the object record

0329 A run-unit deadlock condition occurred. DBMS aborted and rolled
back the run unit. All resources associated with the task are
released

Chapter 16. Database Access Commands 16-37

16.2 Navigational DML

 Further considerations

■ Currency must be established for the object set to execute a FIND/OBTAIN
OWNER command.

■ FIND/OBTAIN OWNER can be used to retrieve the owner record of any set in a
dialog's subschema, whether or not the set has owner pointers.

■ The FIND/OBTAIN OWNER command cannot be used with native VSAM data
sets because owner records are not defined for such sets.

■ When an optional or manual member of a set is accessed, it is not established as
current of set if it is not currently connected to the object set. A subsequent
attempt to access the owner record locates instead the owner of the current record
of set. The IF statement can be used to determine if the accessed record is
actually a member of the object set before executing the FIND/OBTAIN OWNER
command.

�� Syntax for the IF command is presented in Chapter 14, “Conditional
Commands.”

■ After successful execution of a FIND/OBTAIN OWNER command, the accessed
record is current of:

– The run unit

– Its record type

 – Its area

– All sets in which it currently participates as member or owner

■ If the current record of set is the owner record when the command is executed,
currency in the object set is not changed.

Example: The statements in the following example illustrate the use of the
FIND/OBTAIN OWNER command:

MOVE 'CC' TO ORD-NUM.

OBTAIN CALC ORDOR.

OBTAIN LAST ITEM WITHIN ORDER-ITEM.

OBTAIN OWNER WITHIN PRODUCT-ITEM.

16.2.20 FIND/OBTAIN WITHIN SET/AREA

Purpose: Accesses records logically, based on set relationships, or physically, based
on database location.

Records can be accessed serially in a specified set or area, or accessed by selected
specific occurrences of a given record type within the set or area.

 Syntax:

16-38 CA-ADS Reference

16.2 Navigational DML

��───┬─ FIND ───┬───┬──────────────────────────┬──────────────────────────────�

└─ OBTAIN ─┘ └─ KEEP ───┬─────────────┬─┘

└─ EXCLUSIVE ─┘

 �───┬─ NEXT ────────────┬──┬───────────────┬── WITHIN ─┬─ set-name ──┬───────�
├─ PRIOR ───────────┤ └─ record-name ─┘ └─ area-name ─┘
├─ FIRST ───────────┤

├─ LAST ────────────┤

└─ sequence-number ─┘

 �───┬────────────────────┬── . ──��

└─ error-expression ─┘

 Parameters

KEEP
Places a shared lock on the object record.

EXCLUSIVE
Places an exclusive lock on the object record.

NEXT
Specifies the next record in the specified set or area relative to the current record.

PRIOR
Specifies the prior record in the specified set or area relative to the current record.

FIRST
Specifies the first record in the set or area.

LAST
Specifies the last record in the set or area.

sequence-number
Either the name of a variable data field that contains the sequence number of a
record in a set or area or the sequence number itself expressed as a positive or
negative integer. The actual sequence number, expressed as a positive or negative
integer.

If sequence-number is negative, the specified set must have prior pointers.

record-name
Specifies only occurrences of the named record type.

Record-name must be defined as a member of the object set or be contained in the
object area.

Record-name must be specified if set-name or area-name is specified, unless the
record or one of the record's elements is named explicitly somewhere in the
dialog's process code, or if the record is associated with the dialog as a map
record.

WITHIN
Introduces the named set or area to be searched.

set-name
Specifies the set to be searched.

Chapter 16. Database Access Commands 16-39

16.2 Navigational DML

area-name
Specifies the area to be searched.

The named set or area must be known to the dialog's subschema.

error-expression
Specifies the status codes that are returned to the dialog.

�� Error expressions are described in Chapter 10, “Error Handling.”

 Usage:

Considerations: If autostatus is not in use, a dialog's error-status field indicates the
outcome of a FIND/OBTAIN WITHIN SET/AREA command:

�� The autostatus facility is described in Chapter 10, “Error Handling.”

 Further considerations

■ After successful execution of a FIND/OBTAIN WITHIN SET/AREA command,
the accessed record is current of:

– The run unit

Status code Meaning

0000 The request was executed successfully

0304 A sequence number of zero or a variable data field containing a
value of zero was specified for the object record

0306 Currency was not established for the named record, set, or area

0307 The end of the set or area was reached, or the set is empty

0308 The object record is not in the dialog's subschema

0310 The dialog's subschema specifies an access restriction that prohibits
retrieval of the named record

0318 The record retrieved was not bound. The record or one of the
record's elements must be named explicitly somewhere in the
dialog's process code, or the record must be associated with the
dialog as a map record

0323 The named area is not in the dialog's subschema, or the named
record is not in the named area

0326 The object record cannot be found

0329 A run-unit deadlock condition occurred. DBMS aborted and rolled
back the run unit. All resources associated with the task are
released

16-40 CA-ADS Reference

16.2 Navigational DML

– Its record type

 – Its area

– All sets in which it currently participates as member or owner

■ When accessing records within a set, the following considerations apply:

– The current record of the specified set determines the set occurrence to be
accessed. Set currency must be established before a FIND/OBTAIN WITHIN
SET command is executed.

– The next or prior record within a set is the subsequent or previous record,
relative to the current record of the named set in the logical order of the set.
The prior record in a set can be retrieved only if the set has prior pointers.

– The first or last record within a set is the first or last member occurrence,
respectively, in terms of the logical order of the set. The record accessed is
the same record accessed when the current of set is the owner record and the
next or prior record is requested. The last record in a set can be retrieved
only if the set has prior pointers.

– The nth occurrence of a record within a set can be accessed by specifying a
sequence number that identifies the position of the record in the set. The
search begins with the owner of the current of set for the specified set and
continues until the nth record is located or an end-of-set condition is
encountered. If the specified sequence number is negative, the search
proceeds in the prior direction in the set. A negative number can be specified
only if the set has prior pointers.

– When an end-of-set condition occurs, the owner record occurrence of the set
becomes current of:

— The run unit

— Its record type

— Its area

The owner record also becomes current of the set named in the
FIND/OBTAIN command. Currency of other sets in which the record
participates as member or owner is not changed.

– If OBTAIN is specified and an end-of-set condition occurs, the contents of
the owner record are not moved to the dialog's record buffer (that is,
OBTAIN is treated as FIND).

■ When accessing records within an area, the following considerations apply:

– The first record occurrence within an area is the one with the lowest database
key. The last record occurrence is the one with the highest database key.

– The next record within an area is the one with the next higher database key
relative to the current record of the object area. The prior record is the one
with the next lower database key relative to the current of area.

Chapter 16. Database Access Commands 16-41

16.2 Navigational DML

– The first or last record or the nth occurrence of a record in an area must be
accessed to establish correct starting position before next or prior records are
requested.

■ When using a native VSAM set, the following considerations apply:

– When an end-of-set or end-of-area condition (0307) occurs for a native
VSAM set, all currencies remain unchanged.

– The FIRST, LAST, and sequence-number WITHIN area-name options cannot
be used to access spanned data records in a native VSAM data set.

Example: The statements in the following example illustrate the use of the
FIND/OBTAIN WITHIN SET command to retrieve records in an occurrence of the
ORDER-ITEM set:

MOVE 'BB' TO ORD-NUM.

FIND CALC ORDOR.

OBTAIN FIRST ITEM WITHIN ORDER-ITEM.

OBTAIN NEXT WITHIN ORDER-ITEM.

OBTAIN 5 WITHIN ORDER-ITEM.

OBTAIN NEXT WITHIN ORDER-ITEM.

If the fifth ITEM record is the last record in the ORDER-ITEM set, the fourth
OBTAIN statement finds the owner ORDOR record.

16.2.21 FIND/OBTAIN WITHIN SET USING SORT KEY

Purpose: Accesses a member record in a sorted set.

Sets are sorted in ascending or descending order based on the value of a sort-control
element in each member record. The search begins with the current of set or the
owner of the current of set and always proceeds through the set in the next direction.

 Syntax:

��──┬─ FIND ───┬───┬──────────────────────────┬── record-name ────────────────�
└─ OBTAIN ─┘ └─ KEEP ───┬─────────────┬─┘

└─ EXCLUSIVE ─┘

 �──── WITHIN set-name ──────┬───────────┬────────────────────────────────────�
└─ CURRENT ─┘

 �──── USING sort-field-name-variable ──────┬────────────────────┬─── . ──────��
└─ error-expression ─┘

 Parameters

KEEP
Places a shared lock on the object record.

EXCLUSIVE
Places an exclusive lock on the object record.

16-42 CA-ADS Reference

16.2 Navigational DML

record-name
Specifies the record to be accessed.

Record-name must be known to the dialog's subschema and must participate in the
set specified by set-name.

WITHIN set-name
Specifies the set in which the object record participates.

Set-name must be known to the dialog's subschema.

CURRENT
Specifies that the search begins with the current record of the named set.

If the set is sorted in ascending order and the sort key value of the record that is
current of set is higher than the sort key value specified by
sort-field-name-variable, an error condition results. If the set is sorted in
descending order and the sort key value of the record that is current of set is
lower than the sort key value specified by sort-field-name-variable, an error
condition results.

If CURRENT is not specified, the search begins with the owner of the current
record of the named set.

 USING sort-field-name-variable
Specifies the sort-control element to be used in searching the sorted set.

Sort-field-name-variable is either the name of the sort-control element in the
record specified by record-name or the name of a variable data field that contains
the sort key value.

error-expression
Specifies the status codes that are returned to the dialog.

�� Error expressions are described in Chapter 10, “Error Handling.”

 Usage:

Considerations: If autostatus is not in use, a dialog's error-status field indicates the
outcome of a FIND/OBTAIN WITHIN SET USING SORT KEY command:

Status code Meaning

0000 The request was executed successfully

0306 Currency was not established for the named set

0308 The named record or set is not in the dialog's subschema

0310 The dialog's subschema specifies an access restriction that prohibits
retrieval of the object record

0326 The specified record cannot be found

Chapter 16. Database Access Commands 16-43

16.2 Navigational DML

�� The autostatus facility is described in Chapter 10, “Error Handling.”

 Further considerations

■ Before issuing a FIND/OBTAIN WITHIN SET USING SORT KEY command,
the application developer must place the sort key value of the object record in the
applicable field of the dialog's record buffer. If more than one record occurrence
has a sort key value equal to the value in the record buffer, the first such record is
accessed.

■ After successful execution of a FIND/OBTAIN WITHIN SET USING SORT
KEY command, the accessed record is current of:

– The run unit

– Its record type

 – Its area

– All sets in which it currently participates as member or owner

■ If the object record is not found, next of set and prior of set are maintained, but
current of set is nullified.

■ Next of set points to the next higher (for ascending sets) or next lower (for
descending sets) sort key value.

Example: The statements in the following example establish a current
PRODUCT-ITEM set and then retrieve an ITEM record based on the lot number:

MOVE 'P8' TO PROD-NUMBER.

FIND CALC PRODUCT.

MOVE 123H427 TO ITEM-LOT-NUMBER.

FIND ITEM WITHIN PRODUCT-ITEM USING ITEM-LOT-NUMBER.

Status code Meaning

0329 A run-unit deadlock condition occurred. DBMS aborted and rolled
back the run unit. All resources associated with the task are
released.

0331 No sort-control element is defined for the object record in the
dialog's subschema

 16.2.22 GET

Transfers the contents of a record occurrence to a dialog's record buffer.

Elements in the object record are moved to the buffer according to the subschema
view of the record.

 Syntax:

16-44 CA-ADS Reference

16.2 Navigational DML

��──── GET ─────┬───────────────┬─────┬────────────────────┬───── . ──────────��

└─ record-name ─┘ └─ error-expression ─┘

 Parameters

record-name
Retrieves the record that is current of run unit. If record-name is specified,
current of run unit must be an occurrence of the named record type.

Record-name must be specified, unless the record or one of the record's elements
is named explicitly somewhere in the dialog's process code, or the record is
associated with the dialog as a map record.

error-expression
Specifies the status codes that are returned to the dialog.

�� Error expressions are described in Chapter 10, “Error Handling.”

 Usage:

Considerations: If autostatus is not in use, a dialog's error-status field indicates the
outcome of a GET command:

�� The autostatus facility is described in Chapter 10, “Error Handling.”

 Further considerations

■ The GET command operates only on the record that is current of run unit.

■ After the successful execution of a GET command, the accessed record remains
current of run unit and becomes current of its record type, its area, and all sets in
which it participates as member or owner.

Status code Meaning

0000 The request was executed successfully

0508 The object record is not in the dialog's subschema

0510 The dialog's subschema specifies an access restriction that prohibits
retrieval of the object record

0513 Run-unit currency was not established or was nullified by a
previous ERASE command

0518 The record retrieved was not bound. The record or one of the
record's elements must be named explicitly somewhere in the
dialog's process code or the record must be associated with the
dialog as a map record

0520 The current record of run unit is not the same type as the named
record

Chapter 16. Database Access Commands 16-45

16.2 Navigational DML

Example: The following example illustrates the use of the GET command to move
the CUSTOMER record that is current of run unit to the dialog's record buffer:

GET CUSTOMER.

 16.2.23 KEEP

Purpose: Places a shared or exclusive lock on a record occurrence that is current of
run unit, record, set, or area.

 Syntax:

��─── KEEP ─────┬─────────────┬────── CURRENT ────────────────────────────────�

└─ EXCLUSIVE ─┘

 �────┬─ record-name ──────┬──────┬────────────────────┬─────── . ────────────��
├─ WITHIN set-name ─┤ └─ error-expression ─┘
└─ WITHIN area-name ─┘

 Parameters

EXCLUSIVE
Places an exclusive lock on the object record. If EXCLUSIVE is not specified,
the object record receives a shared lock.

CURRENT
Places a lock on the current record of run unit.

record-name
Places the record lock on the current record of the named record type.

WITHIN set-name
Places the record lock on the current record of the named set.

WITHIN area-name
Places the record lock on the current record of the named area.

error-expression
Specifies the status codes that are returned to the dialog.

�� Error expressions are described in Chapter 10, “Error Handling.”

 Usage:

Definition: Record locks set with the KEEP command are maintained only for the
duration of the run unit or until explicitly released by means of a COMMIT command.
The COMMIT command is described earlier in this section.

Considerations: If autostatus is not in use, a dialog's error-status field indicates the
outcome of a KEEP command:

Status code Meaning

0000 The request was executed successfully

16-46 CA-ADS Reference

16.2 Navigational DML

�� The autostatus facility is described in Chapter 10, “Error Handling.”

Status code Meaning

0606 Currency was not established for the named record, set, or area

0610 The dialog's subschema specifies a privacy lock that prohibits
execution of the KEEP command

0629 Deadlock occurred during locking of target record.

 16.2.24 KEEP LONGTERM

Purpose: Sets or releases long-term record locks, and monitors database activity
across run units.

Information on database activity can be returned to a specified location in a dialog's
record buffers.

 Syntax:

��── KEEP LONGterm ────┬─ ALL ─────────┬──────────────────────────────────────�

└─ longterm-id ─┘

 �─┬─ NOTIFY CURrent ───┬─ record-name ─┬───────────────┬─────────────────────�
│ ├─ set-name ────┤ │

│ └─ area-name ───┘ │

├─ TEST RETurn notification into return-location ────┤
├─ RELease ──┤

└─ lock-options ─────────────────────────────────────┘

 �─┬────────────────────┬── . ──��

└─ error-expression ─┘

Expansion of lock-options

��─┬┬─ SHAre ─────┬───┬─ record-name ─┬─────────────────────────────────────┬─�
│└─ EXClusive ─┘ ├─ set-name ─┤ │

 │ └─ area-name ─┘ │

└─ UPgrade ─┬─ SHAre ─┬┬──┬┘

└─ EXClusive ─┘└─ REturn notification into return-location ─┘

 �───────┬─ WAIT ─────────┬───��

 ├─ NOWAIT────────┤

└─ NODEADLOCK ← ─┘

 Parameters

ALL
(Only with the RELEASE parameter) Requests release of all long-term locks
associated with the current task.

Chapter 16. Database Access Commands 16-47

16.2 Navigational DML

longterm-id
Either the name of a 1- to 16-character variable EBCDIC data field that contains a
lock identifier or the 1- to 16-character identifier itself, enclosed in single
quotation marks.

Longterm-id can be used by a subsequent KEEP LONGTERM command to
upgrade or release the long-term lock or to inquire about the status of database
activity for the object record.

NOTIFY CURrent
Initializes a preallocated area in the dialog's record buffer with the information
written by CA-IDMS/UCF on the database activity for the record identified by
longterm-id.

record-name
Specifies monitoring of database activity for the record that is current of
record type.

set-name
Specifies monitoring of database activity for the record that is current of set.

area-name
Specifies monitoring of database activity for the record that is current of area.

TEST RETurn notification into
Requests that information on database activity for the record identified by
longterm-id be returned to the location in the dialog's record buffers specified by
return-location.

In order to specify RETURN NOTIFICATION, a previous KEEP LONGTERM
command must have included the NOTIFY CURRENT option.

return-location
The name of a binary fullword variable data field.

RELease
Releases either the long-term lock for the record identified by longterm-id or all
long-term record locks associated with the current task.

All long-term locks that have not been released by the time the application
terminates are released when the user signs off from DC/UCF with a BYE,
SIGNON, or SIGNOFF command.

lock-options
Identifies the lock options.

Expanded syntax for lock-options is shown above immediately following the
KEEP LONGTERM syntax.

error-expression
Specifies the status codes that are returned to the dialog.

�� Error expressions are described in Chapter 10, “Error Handling.”

16-48 CA-ADS Reference

16.2 Navigational DML

SHAre
Places a long-term shared lock on the object record.

EXClusive
Places a long-term exclusive lock on the object record.

Note: The shared or exclusive lock is placed only if the area in which the record
is located is readied in an update usage mode.

UPGRADE
Upgrades a longterm lock placed on the record identified by longterm-id during
execution of a previous process.

REturn notification into
Clause requesting that information on database activity for the record identified by
longterm-id be returned to the location in the dialog's record buffers specified by
return-location.

WAIT
(Applies only to SHARE/EXCLUSIVE and UPGRADE) Places the run unit in a
wait state if the lock cannot be placed immediately due to an existing lock on the
record.

If waiting causes a deadlock, the requesting run unit terminates abnormally.

NOWAIT
(Applies only to SHARE/EXCLUSIVE and UPGRADE) Does not place the run
unit in a wait state if the lock cannot be placed immediately due to an existing
lock on the record. Control returns to the requesting run unit. The KEEP
LONGTERM request is not executed.

NODEADLOCK
(Applies only to SHARE/EXCLUSIVE and UPGRADE) Places the run unit in a
wait state. If waiting causes a deadlock, control returns to the requesting run unit
and the KEEP LONGTERM request is not executed.

NODEADLOCK is the default when neither WAIT, NOWAIT, or
NODEADLOCK is specified.

If WAIT or NODEADLOCK is specified, the run unit waits to place the lock only
if the following conditions apply:

■ The object record already holds an exclusive lock assigned by a concurrently
executing run unit.

■ The run unit that assigned the existing lock has readied the area in which the
object record is located in an update usage mode.

■ The run unit issuing the KEEP LONGTERM request has readied the area in
which the object record is located in an update usage mode.

Control returns to the requesting run unit unless all of the above conditions apply.

 Usage:

Chapter 16. Database Access Commands 16-49

16.2 Navigational DML

Considerations: If autostatus is not in use, a dialog's error-status field indicates the
outcome of a KEEP LONGTERM command:

�� The autostatus facility is described in Chapter 10, “Error Handling.”

Further considerations: When the database performs an action on an object record,
one of five bit flags is turned on by the runtime system. If no bit is turned on, no
database activity has occurred. The following table shows the bit assignments, their
corresponding hexadecimal and decimal values, and the database activity they
represent.

Status code Meaning

0000 The request was executed successfully

0032 One of the following conditions has occurred:

■ the lock id is already in use by the lterm, with a different page
group or line index format

■ a #getstg request has failed for a lock control block

0036 A lock manager error has occurred. Check the CV log for other
error messages.

0044 A DCL1 error has occurred. Check the CV log for other error
messages.

5101 NODEADLOCK was specified in the KEEP LONGTERM request
and a deadlock condition occurred

5105 The requested record cannot be found or currency was not
established for the object record

5121 Either of the following conditions has occurred:

■ The requested long-term id cannot be found

■ A KEEP LONGTERM request has been issued by a
nonterminal task

5123 Area not found.

5131 Invalid param list.

5147 Area has not been readied.

5148 Run unit has not been bound.

5149 NOWAIT was specified in the KEEP LONGTERM request and a
wait is required.

16-50 CA-ADS Reference

16.2 Navigational DML

Information about database activity that occurred for an object record is returned to a
dialog as a decimal value. The action or combination of database actions taken can be
determined by comparing the returned decimal value listed above to a constant. For
example:

■ If the returned value is 0, no database activity occurred for the record.

■ If the returned value is 2, the record's data was modified.

■ If the returned value is 6, both the record's data and the record's prefix were
modified.

■ If the returned value is 8 or greater, the record was deleted.

■ If the returned value is 31 (the maximum possible value), all of the above actions
occurred for the object record.

Examples: The following examples illustrate the use of KEEP LONGTERM to set
locks and to monitor database activity:

Example 1: Setting and upgrading a lock

The following example illustrates the use of KEEP LONGTERM to set an exclusive
lock on the current CUSTOMER record in one process and then to upgrade the lock to
shared after the record is modified in a subsequent process:

Process A

 .

 .

 .

Bit assignment Hexadecimal
value

Decimal
value

Database action

Fifth bit X'10' 16 The record was physically
deleted.

Fourth bit X'08' 8 The record was logically deleted.

Third bit X'04' 4 The record's prefix was modified;
that is, a set operation occurred
involving the record (for example,
CONNECT, DISCONNECT).

Second bit X'02' 2 The record's data was modified.

First bit X'01' 1 The record was obtained.

Chapter 16. Database Access Commands 16-51

16.2 Navigational DML

KEEP LONGTERM LOCK-ID EXCLUSIVE CUSTOMER.

 .

 .

 .

Process B

 .

 .

 .

MODIFY CUSTOMER.

KEEP LONGTERM LOCK-ID UPGRADE SHARE.

 .

 .

 .

By upgrading the lock to shared, other concurrently executing run units are allowed to
access the CUSTOMER record after it has been modified.

Example 2: Monitoring database activity

The following example illustrates the use of KEEP LONGTERM to request monitoring
of database activity for the current CUSTOMER record in one process and then, in a
subsequent process, to test whether the record was deleted:

Process A

 .

 .

 .

OBTAIN CALC CUSTOMER.

KEEP LONGTERM LOCK-ID NOTIFY CURRENT CUSTOMER.

 .

 .

 .

Process B

 .

 .

 .

KEEP LONGTERM LOCK-ID TEST RETURN NOTIFICATION INTO DB-ACTIV.

IF DB-ACTIV GE 8

THEN

 INVOKE 'ORDCHECK'.

 .

 .

 .

16-52 CA-ADS Reference

16.2 Navigational DML

 16.2.25 MODIFY

Purpose: Replaces element values of a record occurrence in the database with new
element values defined in the dialog's record buffer.

 Syntax:

��─── MODIFY record-name ───────┬────────────────────┬────── . ───────────────��
└─ error-expression ─┘

 Parameters

record-name
Specifies the current occurrence of the named record to be modified with the
values in the dialog's record buffer.

The named record must be known to the dialog's subschema.

error-expression
Specifies the status codes that are returned to the dialog.

�� Error expressions are described in Chapter 10, “Error Handling.”

 Usage:

Considerations: If autostatus is not in use, a dialog's error-status field indicates the
outcome of a MODIFY command:

Status code Meaning

0000 The request was executed successfully

0805 Modification of the record violates a duplicates-not-allowed
specification for a CALC record, sorted set, or index set

0806 Currency was not established for the object set

0809 The object record's area was not readied in an update usage mode

0810 The dialog's subschema specifies an access restriction that prohibits
modification of the named record

0813 Run-unit currency was not established or was nullified by an
ERASE command

0820 The current record of run unit is not the same type as the named
record

0821 An area other than the area of the object record was readied with
an incorrect usage mode

0825 No current record of set type was established

Chapter 16. Database Access Commands 16-53

16.2 Navigational DML

�� The autostatus facility is described in Chapter 10, “Error Handling.”

 Further considerations

■ The following conditions must be satisfied before a MODIFY command is
executed:

– All areas affected either directly or indirectly by the MODIFY command must
be readied in an update usage mode.

�� Usage modes are discussed in 16.2.26, “READY” later in this section.

– The values of all elements defined for the object record in the dialog's
subschema must be in the dialog's record buffer. If the MODIFY command is
not preceded by an OBTAIN or GET command, the application developer
must initialize the applicable values.

– The object record must be established as current of run unit.

■ After successful execution of a MODIFY command, the modified record is current
of:

– The run unit

– Its record type

 – Its area

– All sets in which it participates as member or owner

■ The following special considerations apply to the modification of CALC and
sort-control elements:

– If the modification of a CALC or sort-control element violates a
duplicates-not-allowed specification in the dialog's schema, the MODIFY
command is not executed and an error condition results.

– When a CALC-control element is modified successfully, the object record can
be accessed by using its new CALC key value. The database key of the
object record does not change.

Status code Meaning

0829 A run-unit deadlock condition occurred. DBMS aborted and rolled
back the run unit. All resources associated with the task are
released

0833 Not all sorted sets in which the object record participates are
included in the dialog's subschema

0855 An invalid length was defined for a variable-length record

0883 The length of a record in a native VSAM ESDS was changed or a
prime key in a native VSAM KSDS was modified

16-54 CA-ADS Reference

16.2 Navigational DML

– If a sort-control element is to be modified, the sorted set in which the object
record participates must be included in the dialog's subschema.

– When a sort-control element is modified successfully, any set occurrence in
which the object record currently participates as a member is examined. If
necessary, the object record is disconnected and reconnected in the set
occurrence to maintain the sorted set order.

■ The following special considerations apply to the modification of records in native
VSAM data sets:

– The length of a record in an ESDS cannot be changed even if the records are
variable length.

– The prime key of a KSDS cannot be modified.

Example: The statements in the following example retrieve an occurrence of the
CUSTOMER record by using its CALC key, update the value of the CUST-NAME
element in the dialog's record buffer, and then modify the record occurrence in the
database:

MOVE IN-CUST-NUMBER TO CUST-NUMBER.

OBTAIN CALC CUSTOMER.

MOVE NEW-CUST-NAME TO CUST-NAME.

MODIFY CUSTOMER.

 16.2.26 READY

Purpose: Overrides the usage mode specified in a dialog's subschema for one or
more database areas.

Database areas are readied when a run unit begins (that is, immediately before the
execution of the first database-access command issued by a process).

�� For information on CA-ADS run units, see Chapter 4, “CA-ADS Runtime System.”

 Syntax:

��─── READY ────┬─────────────┬─────┬───�

├─ area-name ─┤ └─ USAGE-MODE ──┬──────┬──────────────────

└─ ALL ← ─────┘ ├─ IS ─┤

 └─ = ─┘

 �──┬─────────────────────────��

──┬─────┬─────────────┬────┬─ RETRIEVAL ← ─┬───┬──┘

│ ├─ PROTECTED ─┤ └─ UPDATE ──────┘ │

│ └─ EXCLUSIVE ─┘ │

 │ │

└─ NOREADY ──────────────────────────────────┘

 Parameters

area-name
Readies the named area in the specified usage mode.

Chapter 16. Database Access Commands 16-55

16.2 Navigational DML

ALL
Readies all areas in the specified usage mode.

If neither area-name nor ALL is specified, all areas defined in the dialog's
subschema are readied in the usage mode specified in the subschema.

USAGE-MODE
Specifies the usage mode in which the object areas are readied.

IS or = are optional keywords and have no effect on processing.

PROTECTED
Prevents concurrent update of the object areas.

EXCLUSIVE
Prevents concurrent use of the object areas.

If neither PROTECTED nor EXCLUSIVE is specified, the usage mode is
qualified as shared.

RETRIEVAL
Readies the object areas for retrieval only.

RETRIEVAL is the default when neither RETRIEVAL or UPDATE is
specified.

UPDATE
Readies the object areas for both retrieval and update.

NOREADY
Indicates that the area or areas named are not to be readied.

 Usage

Overview of usage modes: Usage modes restrict runtime operations. Database
areas can be readied in a retrieval or update usage mode.

■ When an area is readied in a retrieval usage mode, the run unit cannot issue
CONNECT, DISCONNECT, ERASE, MODIFY, or STORE commands for
records in the area.

■ When an area is readied in an update usage mode, the run unit can issue all
database commands for records in the area.

Usage modes can be qualified as protected, exclusive, or shared.

■ A database area readied in a protected retrieval or update usage mode cannot be
updated by a concurrently executing run unit. A run unit cannot ready a database
area in a protected usage mode if another run unit has readied the same area in an
update usage mode.

■ A database area readied in an exclusive retrieval or update usage mode cannot be
used in any way by a concurrently executing run unit. A run unit cannot ready a
database area in an exclusive usage mode if another run unit has readied the area
in any usage mode.

16-56 CA-ADS Reference

16.2 Navigational DML

■ A database area readied in a shared retrieval or update usage mode can be
accessed by multiple run units concurrently. If neither protected nor exclusive is
specified, the usage mode is qualified as shared.

 Considerations

■ CA-ADS automatically readies all areas defined in a dialog's subschema in the
usage mode (if any) specified in the subschema, or in a shared retrieval usage
mode, unless the NOREADY option is specified.

■ If the same area is named in more than one READY command in a process, the
usage mode specified by the last READY command coded in the process applies
to the named area for the entire process.

■ An area cannot be readied in an update usage mode if the area includes any
records that participate in a set whose members or owner are in an area readied in
a retrieval usage mode.

■ If a READY command results in a usage mode conflict for an area, the dialog
issuing the READY command is placed in a wait state until the area is available
in the requested usage mode.

 Example

Example 1: Readying an area: The following example illustrates the use of the
READY command:

READY ORDOR-REGION

USAGE-MODE IS PROTECTED UPDATE.

Example 2: Specifying that an area not be readied: The following example
illustrates the use of the NOREADY option. In this example, the area
CUSTOMER-REGION is readied in shared update while the area ORDOR-REGION is
not readied.

READY CUSTOMER-REGION

USAGE-MODE IS SHARED UPDATE.

READY ORDOR-REGION

USAGE-MODE IS NOREADY.

 16.2.27 RETURN DB-KEY

Purpose: Retrieves an index entry without retrieving the associated record.

Note: This command applies only to CA-IDMS system-owned indexed records.

 Syntax:

��─── RETURN DB-KEY into db-key-variable FROM index-set-name ─────────────────�

 �─┬─ CURRENCY ─────────────────┬────┬────────────────────┬─── . ─────────────��

├─ FIRST currency ───────────┤ └─ error-expression ─┘
├─ LAST currency ────────────┤

├─ NEXT currency ────────────┤

├─ PRIOR currency ───────────┤

└─ USING index-key-variable ─┘

Chapter 16. Database Access Commands 16-57

16.2 Navigational DML

 Parameters

RETURN DB-KEY into
Clause introducing the return of the database key, to the record associated with the
specified index entry, to the location identified by db-key-variable.

db-key-variable
A numeric variable data field in the dialog's record buffers that can hold a binary
fullword value.

Db-key-variable is a PIC S9(8) COMP SYNC.

FROM index-set-name
Specifies the index set associated with the index entry being retrieved.

Note: Index-set-name must be known to the dialog's subschema.

CURRENCY
Retrieves the entry that is current of index.

FIRST currency
Retrieves the first entry in the index.

LAST currency
Retrieves the last entry in the index.

NEXT currency
Retrieves the entry following the current of index.

PRIOR currency
Retrieves the entry preceding the current of index.

USING index-key-variable
Retrieves the first index entry whose symbolic key matches the contents of
index-key-variable.

Index-key-variable is the name of a variable data field that is not more than 256
bytes in length.

error-expression
Specifies the status codes that are returned to the dialog.

�� Error expressions are described in Chapter 10, “Error Handling.”

Usage: The RETURN DB-KEY command is used as follows:

■ The value of the symbolic key in the index entry is returned to the symbolic key
field for the associated record in the dialog's record buffer.

■ The database key that points to the record associated with the index entry is
returned to a specified field in the dialog's record buffers.

■ The record referenced in the RETURN DB-KEY command must be referenced in
a prior DML call in the dialog's run unit.

Considerations: If autostatus is not in use, a dialog's error-status field indicates the
outcome of a RETURN DB-KEY command:

16-58 CA-ADS Reference

16.2 Navigational DML

�� The autostatus facility is described in Chapter 10, “Error Handling.”

 Further considerations

■ After successful execution of a RETURN DB-KEY command, the retrieved index
entry is current of index.

■ If an end-of-set condition is encountered, currency is set to the last or first entry in
the index, based on whether next or prior currency has been requested.

■ If a specified entry cannot be found, currency is set between the two entries that
are higher and lower than the specified value.

■ If the specified value is higher or lower than all index entries, currency is set after
or before the highest or lowest entry in the index.

Status code Meaning

0000 The request was executed successfully

1707 The end of the index was reached. Currency is set on the index
owner. The DBMS returns the owner's db-key

When 1707 is returned for an SPF index, currency remains on the
last entry of the index. No db-key is returned.

1725 Index currency was not established with an OBTAIN command

1726 The index entry cannot be found

1729 A run-unit deadlock condition occurred. DBMS aborted and rolled
back the run unit. All resources associated with the task are
released

 16.2.28 ROLLBACK

Purpose: Requests recovery of the part of a run unit that falls between two
checkpoints (a recovery unit).

 Syntax

��─── ROLLBACK ────┬────────┬────┬────────────┬───────── . ───────────────────��

└─ TASK ─┘ └─ CONTINUE ─┘

 Parameters

TASK
Specifies that database, queue, and scratch areas are recovered.

If TASK is not specified, only database areas are recovered.

CONTINUE
Rolls back the issuing run unit (ROLLBACK CONTINUE) or all run units
associated with the issuing task (ROLLBACK TASK CONTINUE), but does not

Chapter 16. Database Access Commands 16-59

16.2 Navigational DML

terminate the run unit. Database access can be resumed without issuing BIND and
READY statements.

 Usage:

Definition: ROLLBACK performs the following functions:

■ Writes an ABRT checkpoint to the CA-IDMS/DB journal file.

■ Nullifies all currencies.

■ Terminates database activities within the process and, if no database commands
are issued after the ROLLBACK command, relinquishes control over database
areas. If other database commands are issued after the ROLLBACK command,
the database areas are readied again automatically in the applicable usage modes.

Considerations After successful execution of a ROLLBACK command, database,
queue, and scratch areas are restored to the most recent checkpoint.: The only
acceptable status code returned for a ROLLBACK command is 0000.

 16.2.29 STORE

Purpose: Adds records to the database.

 Syntax:

��─────── STORE record-name---─┬────────────────────┬─── . ───────────────────��
└─ error-expression ─┘

 Parameters

record-name
Specifies the name of the object record occurrence to be moved from the dialog's
record buffer to the database.

Record-name must be known to the dialog's subschema.

error-expression
Specifies the status codes that are returned to the dialog.

�� Error expressions are described in Chapter 10, “Error Handling.”

 Usage:

Definition: The STORE command moves the object record occurrence from the
dialog's record buffer to the database and connects it to an occurrence of each set for
which the record is defined as an automatic member. The STORE command performs
the following functions:

■ Acquires space in the database and a database key for a new record occurrence

■ Transfers the values of the record elements from the dialog's record buffer to the
object record occurrence in the database

16-60 CA-ADS Reference

16.2 Navigational DML

■ Connects the object record to all sets for which it is defined as an automatic
member

Considerations: If autostatus is not in use, a dialog's error-status field indicates the
outcome of a STORE command:

�� The autostatus facility is described in Chapter 10, “Error Handling.”

 Further considerations

■ A record occurrence is stored in the database based on the location mode specified
in the schema definition of the record:

Status code Meaning

0000 The request was executed successfully

1202 The suggested DIRECT-DBKEY value is not within the page range
for the object record

1205 Storage of the record violates a duplicates-not-allowed specification
for a CALC record, sorted set, or index set

1208 The object record is not in the dialog's subschema

1209 The object record's area was not readied in an update usage mode

1210 The dialog's subschema specifies an access restriction that prohibits
storage of the named record

1211 The object record cannot be stored because of insufficient space

1212 The record cannot be stored because no database key is available

1221 An area other than the area of the object record was readied with
an incorrect usage mode

1225 A current of set was not established for each set to which the
object record is to be connected

1229 A run-unit deadlock condition occurred. DBMS aborted and rolled
back the run unit. All resources associated with the task are
released.

1233 Not all sets in which the object record participates as an automatic
member are included in the dialog's subschema.

1255 An invalid length was defined for a variable-length record.

1261 The record cannot be stored because of broken chains in the
database.

1287 The owner and member records for a set to be updated are not in
the same page group or do not have the same dbkey radix point.

Chapter 16. Database Access Commands 16-61

16.2 Navigational DML

– CALC — The object record is placed on or near a database page that is
calculated by CA-IDMS from a control element (the CALC key) in the
record.

– VIA — The object record is placed as close as possible to its owner record
occurrence if owner and member record occurrences share a common database
page range. If owner and member record occurrences do not share a common
page range, the object record is placed in the same relative position in its own
page range as that in which the owner record is placed in its page range.

– DIRECT — The object record is placed on or near a database page that is
identified by a value moved by the application developer to the
DIRECT-DBKEY field.

■ Before a STORE command can be executed, the following conditions must be
satisfied:

– All areas affected either directly or indirectly by the STORE command must
be readied in an update usage mode.

�� Usage modes are discussed in 16.2.26, “READY” earlier in this section.

– All control elements (that is, CALC and sort keys) must be initialized.

– If the object record has a location mode of DIRECT, the DIRECT-DBKEY
field must be initialized with a suggested database key value or a null
database key value of -1.

– If the object record is to be stored in a native VSAM RRDS, the
DIRECT-DBKEY field must be initialized with the relative record number
that represents the location within the data set where the record is to be
stored.

– All sets in which the object record is defined as an automatic member and the
owner record of each of those sets must be included in the dialog's
subschema.

– If the object record has a location mode of VIA, currency must be established
for the owner of the set through which the record is stored, regardless of
whether the record is an automatic or manual member of the set.

– Currency must be established for all set occurrences for which the object
record is defined as an automatic member. A STORE command connects the
object record to a set occurrence, based on set order, as follows:

— If the object record is defined as a member of a set that is ordered
FIRST, the object record is connected right after the owner to become the
first member of the set. If the set is ordered LAST, the object record is
connected as the last member of the set.

— If the object record is defined as a member of a set that is ordered NEXT
or PRIOR, the record that is current of set establishes the set occurrence
to which the object record is connected and determines the record's
position within the set.

16-62 CA-ADS Reference

16.2 Navigational DML

— If the object record is defined as a member of a sorted set, the process
must establish currency on the set by getting currency on the set's owner.
Then, the process can store the object record. CA-IDMS/DB
automatically connects the object record to the correct position in the set
in order to maintain the proper set sequence.

The sort key of the object record is compared with the sort key of the
record that is current of set to determine if the object record can be
inserted in the set by movement in the next direction. If it can, current of
set remains unchanged and the object record is connected. If it cannot,
current of set is repositioned at the owner record occurrence (not
necessarily the current occurrence of the owner record type) and
movement proceeds in the next direction until the object record can be
properly connected.

■ After successful execution of a STORE command, the object record becomes
current of:

– The run unit

– Its record type

 – Its area

– All sets in which it participates as owner or automatic member

Example: The statements in the following example store a new ITEM record in the
database and connect it to the correct occurrences of the ORDER-ITEM and
PRODUCT-ITEM sets:

MOVE IN-PROD-NUMBER TO PROD-NUMBER.

FIND CALC PRODUCT.

MOVE IN-ORD-NUMBER TO ORD-NUMBER.

FIND CALC ORDOR.

STORE ITEM.

Chapter 16. Database Access Commands 16-63

16.3 Logical Record Facility commands

16.3 Logical Record Facility commands

In CA-ADS, Logical Record Facility (LRF) commands are used to retrieve and update
data that is defined in a Logical Record Facility subschema.

16.3.1 Overview of LRF database access

To enable use of LRF, DBAs predefine the paths that a dialog can use to access
specific views of data in the database. Logic to navigate the database is contained in
the path definition.

Given the dialog's data requirements, the programmer selects the appropriate LRF path
and then codes database requests in the form of LRF commmands within the dialog's
process logic. At runtime, CA-IDMS/DB locates the requested data using the specified
path.

Components of LRF: LRF processes commands associated with logical records.
When a dialog issues an LRF command, LRF selects an appropriate path based on the
information in the command statement. LRF uses field values in the record buffer that
is established for the logical record to update the database.

Logical records are defined in a subschema by the database administrator (DBA).
Each logical record is composed of fields selected from one or more subschema
records or roles that are typically accessed together.

Logical Record Facility paths are also defined in the subschema. Each path is a
group of database access instructions that perform the processing necessary to satisfy
an LRF request. One or more paths are associated with each logical record in the
subschema.

The predefined conditions affecting logical record access include:

■ Restrictions on the commands that can be issued for each logical record

■ Selection criteria that can be specified by a WHERE clause in each command for
each logical record

■ Path statuses returned by LRF to indicate the result of each command

To use Logical Record Facility commands effectively, the application developer must
be familiar with the processing characteristics of the logical records that are defined in
the subschema.

�� For more detailed information on using Logical Record Facility, refer to CA-IDMS
Logical Record Facility.

Process code within a single dialog cannot reference more than one logical record that
includes fields from a given subschema record.

16-64 CA-ADS Reference

16.3 Logical Record Facility commands

 16.3.2 WHERE clause

A WHERE clause is used to specify criteria for selection of one or more occurrences
of a logical record that is the object of an ERASE, MODIFY, OBTAIN, or STORE
command. A WHERE clause is also used to direct LRF to a particular logical record
path.

 Considerations

■ A WHERE clause is specified in the form of an expression that consists of one or
more conditions to be tested.

– Multiple conditions are combined with the logical operators AND and OR.

– The logical operator NOT can precede a single condition or a compound
condition that is enclosed in parentheses. NOT specifies the opposite of the
condition.

■ A test condition is expressed as a comparison or a keyword.

■ A logical record occurrence is selected only if the entire expression evaluates as
true.

■ Operators in a conditional expression are evaluated one at a time, from left to
right, in order of precedence.

�� The default order of precedence is the same as that described for other
conditional expressions discussed in Chapter 8, “Conditional Expressions.”

 16.3.3 Conditional expression

Purpose: The conditional expression of the WHERE clause is used when the
process command syntax specifies lr-conditional-expression.

 Syntax

┌───────────── AND ────────────────┐

├───────────── OR ─────────────────┤

��──┬─────────┬──↓─┬─ dba-designated-keyword ──────┬┴──┬─────┬────────────────��
└─ NOT (─┘ └─┬───────┬─┬─ lr-comparison ──┬┘ └─) ─┘

└─ NOT ─┘ └─ test-condition ─┘

 Parameters

NOT
Specifies that the opposite of the condition fulfills the test requirements.

The opposite of the entire conditional expression can be specified by enclosing the
expression in parentheses and preceding it with NOT.

dba-designated-keyword
Specifies a keyword, defined in the subschema by the database administrator
(DBA), that directs LRF to a particular logical record path. The selected path
must be associated with the object logical record.

Chapter 16. Database Access Commands 16-65

16.3 Logical Record Facility commands

lr-comparison
Specifies a comparison expression that establishes criteria used to select
occurrences of the object logical record.

Syntax for the comparison expression is shown later in this chapter.

test-condition
Specifies a condition to be tested, such as command status or cursor position.

�� Test conditions are described in Chapter 8, “Conditional Expressions.”

AND
Specifies that the expression is true only if the outcome of both of the conditions
being tested is true.

OR
Specifies that the expression is true if the outcome of either one or both of the
conditions being tested is true.

 16.3.4 Comparison expression

Purpose: Used to compare two values or to compare two character strings to
determine if the first string matches or contains the second string.

 Syntax

��─┬─┬─ comparison-value ──────┬── operator ──┬─ comparison-value ──────┬─┬───��
│ └─ arithmetic-expression ─┘ └─ arithmetic-expression ─┘ │

 │ │

└─ comparison-value ─┬─ CONTAINS ─┬─ comparison-value ─────────────────┘
└─ MATCHES ──┘

Expansion of comparison-value

��─┬─ literal ──┬─────��
├─ data-field-name-variable ───┤
└─ lr-field-name ─┬────────────┬─┬───────────────────────┬─┬───────┬─┘

└ OF lr-name ┘ │ ┌─────────────┐ │ └ OF LR ┘

└ (─↓─ subscript ─┴─) ┘

 Parameters

comparison-value
Specifies the value to be compared.

Expanded syntax for comparison-value is shown above immediately following the
compression expression syntax.

arithmetic-expression
Specifies an arithmetic expression, according to the rules presented in Chapter 6,
“Arithmetic Expressions.”

operator
The comparison operators are:

16-66 CA-ADS Reference

16.3 Logical Record Facility commands

CONTAINS
Searches the left operand for an occurrence of the right operand.

The length of the right operand must be less than or equal to the length of the left
operand, and both operands must be EBCDIC or unsigned zoned decimal data
types. If the right operand is not entirely contained in the left operand, the
outcome of the comparison is false.

MATCHES
Compares the left operand to the right operand, one character at a time, beginning
with the leftmost character in each operand. The right operand can contain mask
characters, as follows:

■ @ -- Matches any alphabetic character

■ # -- Matches any numeric character

■ * -- Matches any character

Any other character in the right operand matches only itself in the left operand.

literal
A user-supplied variable, expressed as a numeric constant, or the character string
itself, enclosed in single quotation marks.

data-field-name-variable
Specifies the name of a variable data field, according to the rules presented in
Chapter 11, “Variable Data Fields.”

lr-field-name
Specifies the name of a field in a Logical Record Facility record known to the
subschema associated with the dialog.

OF lr-name
Specifies the name of the record that contains the field referenced by
lr-field-name.

This clause is required only if the named field is not unique among the records
known to the dialog.

Operator Synonym Meaning

EQ = Equal

NE Not equal to

GT > Greater than

LT < Less than

GE Greater than or equal to

LE Less than or equal to

Chapter 16. Database Access Commands 16-67

16.3 Logical Record Facility commands

subscript
Specifies the applicable occurrence of the field referenced by lr-field-name. This
can be a variable field containing the applicable occurrence, the occurrence itself,
or an expression.

This clause applies only if the named field is defined as a multiply-occurring field.

OF LR
Specifies that the value of the named field at the time that the request is issued is
used throughout processing of the request.

If the value of the field changes during processing, LRF continues to use the
original value. If OF LR is not specified and the value of the field changes during
processing of the request, the new value in the dialog's record buffer is used for
any further processing of the request.

 Usage:

Considerations: Both the left and right operands must be EBCDIC or unsigned
zoned decimal data types. The length of the string that is compared is set to the
length of the shorter of the two operands. If a character in the left operand does not
match the corresponding character in the right operand, the outcome of the comparison
is false.

 16.3.5 ERASE

Purpose: Deletes record occurrences.

The execution of an ERASE command does not necessarily result in the deletion of all
or any of the database records used to create the object Logical Record Facility
database-access record. The path selected to service the ERASE request performs only
the database-access operations specified in the subschema.

 Syntax

��─── ERASE lr-name ────┬───────────────────────────────────┬─────────────────�
└─ WHERE lr-conditional-expression ─┘

 �──┬────────────────────┬───── . ──��

└─ error-expression ─┘

 Parameters

lr-name
Specifies occurrences of the logical record used for database access.

Lr-name must be known to the dialog's subschema.

WHERE lr-conditional-expression
Specifies the selection criteria to be applied to the logical record request.

Syntax for lr-conditional-expression is described earlier in this section.

16-68 CA-ADS Reference

16.3 Logical Record Facility commands

error-expression
Specifies the status codes that are returned to the dialog.

�� Error expressions are described in Chapter 10, “Error Handling.”

Example: The ERASE command in the following example deletes the occurrence of
CUST-ORDER-LR with the specified customer and order numbers:

ERASE CUST-ORDER-LR

WHERE CUST-NUMBER EQ '123456789H'

AND ORD-NUMBER EQ '7654321'

 AND DELETE-ORDER.

The DBA-designated keyword, DELETE-ORDER, directs processing to a path that
retrieves the applicable occurrence of the CUST-ORDER-LR logical record and deletes
the specified order information from the database.

 16.3.6 MODIFY

Purpose: Modifies field values in a record occurrence.

 Syntax:

��─── MODIFY lr-name ────┬───────────────────────────────────┬────────────────�
└─ WHERE lr-conditional-expression ─┘

 �──┬────────────────────┬───── . ──��

└─ error-expression ─┘

 Parameters

lr-name
Specifies the name of the logical record.

Lr-name must be known to the dialog's subschema.

WHERE lr-conditional-expression
Specifies the selection criteria to be applied to the logical record request.

Syntax for lr-conditional-expression is described earlier in this section.

error-expression
Specifies the status codes that are returned to the dialog.

�� Error expressions are described in Chapter 10, “Error Handling.”

Example: The statements in the following example update an occurrence of the
logical record CUST-ORDER-LR by specifying a new customer name and a new
required date for the associated order:

Chapter 16. Database Access Commands 16-69

16.3 Logical Record Facility commands

OBTAIN FIRST CUST-ORDER-LR

WHERE CUST-NUMBER EQ '123456789H'

AND ORD-NUMBER EQ '7654321'.

MOVE NEW-CUST-NAME TO CUST-NAME.

MOVE NEW-DATE-REQ TO ORD-DATE-REQ.

MODIFY CUST-ORDER-LR.

 16.3.7 OBTAIN

Purpose: Retrieves logical record occurrences.

 Syntax:

��───── OBTAIN ───┬─ FIRST ──┬─── lr-name ────────────────────────────────────�
└─ NEXT ← ─┘

 �───┬───────────────────────────────────┬──────┬────────────────────┬── . ───��

└─ WHERE lr-conditional-expression ─┘ └─ error-expression ─┘

 Parameters

FIRST
Retrieves the first occurrence of the named logical record that meets the selection
criteria specified in the WHERE clause.

NEXT
Retrieves the next occurrence of the named logical record that meets the selection
criteria specified in the WHERE clause.

NEXT is the default when neither FIRST or NEXT is specified.

If the same selection criteria were not specified in a previous OBTAIN command,
OBTAIN NEXT is equivalent to OBTAIN FIRST.

lr-name
Specifies the name of the logical record

Lr-name must be known to the dialog's subschema.

WHERE lr-conditional-expression
Specifies the selection criteria to be applied to the logical record request.

Syntax for lr-conditional-expression is described earlier in this section.

error-expression
Specifies the status codes that are returned to the dialog.

�� Error expressions is described in Chapter 10, “Error Handling.”

 Usage:

Definition: Data from object logical-record fields is transferred to the buffer
established in the dialog's record buffers. The OBTAIN command can be issued
iteratively to retrieve a series of record occurrences that meet the criteria specified in a
WHERE clause.

16-70 CA-ADS Reference

16.3 Logical Record Facility commands

Example: The statements in the following example retrieve all occurrences of the
logical record CUST-ORDER-LR for customer 1234567890:

OBTAIN FIRST CUST-ORDER-LR

WHERE CUST-NUMBER EQ '123456789H'.

ON LR-NOT-FOUND THEN INVOKE 'CUSTCHEK'.

ON LR-FOUND

 REPEAT.

OBTAIN NEXT CUST-ORDER-LR

WHERE CUST-NUMBER EQ '123456789H'.

 .

 .

 .

 END.

DISPLAY.

 16.3.8 ON command

Purpose: Indicates additional processing to be performed when a specified path
status is returned by the Logical Record Facility following the execution of a LRF
command.

 Syntax:

 ┌────────────────────────┐

��─── ON path-status ─┬─ REPEAT. ──↓── command-statement. ──┴── END. ─────────�
 │

└─ THEN ───┬── command-statement. ───────────────────┬──
 │ ┌──────────────────────┐ │

└─ DO. ─↓─ command-statement. ─┴── END. ──┘

 �──┬───────────��

 ──┬───┬───┘

└── ELSE ───┬── command-statement. ───────────────────┬───┘
 │ ┌──────────────────────┐ │

└─ DO. ─↓─ command-statement. ─┴── END. ──┘

 Parameters

path-status
Tests whether Logical Record Facility returned the named path status. Path-status
specifies a 1- to 16-character DBA-defined or standard path status defined for the
path selected to service the previous logical record request.

REPEAT command-statement
Specifies the commands to be executed as long as LRF returns the named path
status.

REPEAT begins a processing loop; END terminates the loop. Each command is
executed sequentially before the path status is tested again.

Command-statement can be any valid CA-ADS process command, including
another logical record command.

Chapter 16. Database Access Commands 16-71

16.3 Logical Record Facility commands

THEN command-statement
Specifies the commands to be executed if LRF returns the named path status.

Note: Multiple command statements must be preceded by DO and followed by
END.

Command-statement can be any valid CA-ADS process command, including
another logical command.

ELSE command-statement
Specifies the commands to be executed if LRF returns the named path status.

Command-statement can be any valid CA-ADS process command, including
another logical record command.

Note: Multiple command statements must be preceded by DO and followed by
END.

A given ON command statement can include only one ELSE clause, and that
ELSE clause must match the most recent ON command not associated with an
ELSE clause.

 Usage

Path statuses: A path status, in the form of a 1- to 16-character unquoted string,
indicates the result of a LRF request. LRF can return either a path status defined by
the DBA in the subschema associated with the dialog or one of the standard path
statuses. The standard path statuses are:

■ LR-FOUND indicates that the logical record request was executed successfully.
When LR-FOUND is returned, the dialog's error-status field contains 0000.

■ LR-NOT-FOUND indicates that the object record cannot be found either because
no such record exists or because all occurrences of the record have already been
retrieved. When LR-NOT-FOUND is returned, the dialog's error-status field
contains 0000.

■ LR-ERROR indicates that a logical record request was issued incorrectly or that
an error occurred in the processing of the path selected to service the request.
When LR-ERROR is returned, the dialog's error-status field contains one of the
status codes listed below.

Status code Meaning

2001 The requested logical record was not found in the subschema (The
path DML statement, EVALUATE, returns 0000 if true and 2001 if
false)

2008 The object record is not in the dialog's subschema, or the specified
request is not permitted for the named record

2010 The dialog's subschema prohibits access to logical records

16-72 CA-ADS Reference

16.3 Logical Record Facility commands

 Considerations

■ One or more process commands can be specified to be executed once or
iteratively, based on the returned path status. If an iterative sequence is used, the
path status must change during processing to prevent uncontrolled looping.

■ ON commands can be nested to any level and can be included in IF and WHILE
command structures.

�� The IF and WHILE commands are described in Chapter 14, “Conditional
Commands.”

■ When coding ON commands, indentation should be used wherever possible to
make the statement more readable and to ensure that the required clauses are
properly matched.

Status code Meaning

2040 The WHERE clause in an OBTAIN NEXT command directed LRF
to a different processing path than did the WHERE clause in the
preceding OBTAIN command for the same logical record

2041 The request's WHERE clause cannot be matched to a path in the
dialog's subschema

2042 The logical record path for the request specifies return of the
LR-ERROR status to the process

2043 Bad or inconsistent data was encountered in the logical record
buffer during evaluation of the request's WHERE clause

2044 The request's WHERE clause does not include data required by the
logical record path

2045 A subscript value in a WHERE clause is either less than zero or
greater than its maximum allowed value

2046 One of the following conditions occurred during the evaluation of a
WHERE clause:

■ Arithmetic overflow (fixed point, decimal, or exponent)

■ Arithmetic inflow (exponent)

■ Divide exception (fixed point, decimal, or floating point)

 ■ Significance exception

2063 The request's WHERE clause contains a keyword that exceeds the
16-character maximum

2072 The request's WHERE clause is too long to be evaluated in the
available work area

Chapter 16. Database Access Commands 16-73

16.3 Logical Record Facility commands

Examples: The following examples test the path status before performing additional
processing.

Example 1: Displaying messages when a record is not found

The statements in the following example display messages based on the path status
returned after an attempt is made to retrieve a CUST-ORDER-LR logical record:

OBTAIN CUST-ORDER-LR

WHERE CUST-NUMBER EQ '123456789H'.

ON NO-CUSTOMER

THEN

DISPLAY MSG TEXT IS 'CUSTOMER NOT ON FILE'.

ON NO-ORDER

THEN

DISPLAY MSG TEXT IS 'CUSTOMER HAS NO ORDERS'.

ON LR-NOT-FOUND

THEN

DISPLAY MSG TEXT IS 'RECORD NOT FOUND'.

Example 2: Retrieving a record after a specified record

The statements in the following example retrieve VENDOR-LR logical records as long
as the path status returned after the previous retrieval is VENDOR-CODE-010:

OBTAIN FIRST VENDOR-LR.

ON VENDOR-CODE-H1H

 REPEAT.

OBTAIN NEXT VENDOR-LR.

 .

 .

 .

 END.

DISPLAY.

16-74 CA-ADS Reference

16.3 Logical Record Facility commands

 16.3.9 STORE

Purpose: Stores new occurrences of logical records.

 Syntax:

��─── STORE lr-name ────┬───────────────────────────────────┬─────────────────�
└─ WHERE lr-conditional-expression ─┘

 �──┬────────────────────┬─── . ──��

└─ error-expression ─┘

 Parameters

lr-name
Specifies the name of the Logical Record Facility record.

Lr-name must be known to the dialog's subschema.

WHERE lr-conditional-expression
Specifies the selection criteria to be applied to the logical record request.

Syntax for lr-conditional-expression is described earlier in this section.

error-expression
Specifies the status codes that are returned to the dialog.

�� Error expressions are described in Chapter 10, “Error Handling.”

 Usage:

Considerations: The execution of a STORE command does not necessarily result in
new occurrences of all or any of the database records used to create the object logical
record. The path selected to service the STORE request performs only the database
access operations specified in the subschema.

For example, CUST-ORDER-LR comprises fields from the CUSTOMER, PRODUCT,
ORDOR, and ITEM records. A new CUST-ORDER-LR logical record is stored for
each new customer order; however, only new occurrences of the ORDOR and ITEM
records are actually added to the database. The CUSTOMER and PRODUCT records
already exist in the database.

Chapter 16. Database Access Commands 16-75

16.3 Logical Record Facility commands

Example: The statements in the following example store a new occurrence of the
logical record CUST-ORDER-LR for customer 1234567890. The DBA-designated
keywords NEW-ORDER and NEW-ITEM direct LRF to the logical record paths that
store new order and new item information, respectively.

MOVE ORDER-NEW TO ORDOR.

STORE CUST-ORDER-LR

WHERE CUST-NUMBER EQ '123456789H' AND NEW-ORDER.

 .

 .

 .

MOVE ITEM-NEW TO ITEM.

MODIFY CUST-ORDER-LR

 WHERE NEW-ITEM.

16-76 CA-ADS Reference

 Chapter 17. Map Commands

17.1 Overview . 17-3
17.2 Map modification commands . 17-4
17.3 Attributes Command . 17-5
17.4 CLOSE . 17-10
17.5 MODIFY MAP . 17-12
17.6 Pageable maps . 17-21

17.6.1 Areas of a pageable map . 17-21
17.6.2 Map paging session . 17-22
17.6.3 Map paging dialog options . 17-27
17.6.4 GET DETAIL . 17-28
17.6.5 PUT DETAIL . 17-30
17.6.6 Creating or modifying a detail occurrence of a pageable map 17-32
17.6.7 Specifying a numeric value associated with an occurrence 17-32
17.6.8 Specifying a message to appear in the message field of an

occurrence . 17-32

Chapter 17. Map Commands 17-1

17-2 CA-ADS Reference

17.1 Overview

 17.1 Overview

Online maps (CA-ADS) and file maps (CA-ADS/Batch) are created and stored in the
data dictionary using the CA-IDMS mapping facility. Map modification commands
change the copy of the map maintained for a particular dialog, not the stored map
definition.

�� Further information on maps and map attributes can be found in CA-IDMS
Mapping Facility.

Map commands: CA-ADS map commands are used to adjust maps to meet the
processing requirements of individual dialogs at run time. Pageable map commands
are used to create, retrieve, and modify detail occurrences of a pageable map.

The map modification and pageable map commands are summarized in the following
table. Each command is presented alphabetically later in this section.

Summary of map modification and pageable map commands

Type Command Description

Map modification
commands

Attributes Modifies the display intensity or the
protected/unprotected specification of one or
more map data fields, providing an
alternative format to the MODIFY MAP
command for these attributes

CLOSE Closes the dialog input and output file maps
(batch only)

MODIFY
MAP

Modifies a map's write control character
(WCC) options and specifies attributes of one
or more map data fields

Pageable map detail
commands

GET
DETAIL

Retrieves a modified detail occurrence

PUT
DETAIL

Creates or modifies a detail occurrence

Chapter 17. Map Commands 17-3

17.2 Map modification commands

17.2 Map modification commands

Map modification commands are used to change a map to meet processing
requirements of individual dialogs at run time. Single or multiple attributes can be
changed globally or on a field-specific basis. Requested map modifications can be
designated as temporary or permanent. Temporary changes apply only to the next
display of the map. Permanent changes apply as long as the dialog remains operative
in the application thread.

Pageable map considerations: For a pageable map, the following considerations
apply:

■ Permanent map modifications to detail area map fields modify only detail
occurrences referenced by subsequent PUT DETAIL commands.

■ Temporary map modifications to detail area map fields modify only the detail
occurrence referenced by the next PUT DETAIL command. If temporary
modifications are to apply in subsequent PUT DETAIL commands, the appropriate
map modification commands must be repeated.

■ Temporary map modifications to header and footer map data fields apply only to
the first display of the map following the map modification. Temporary map
modifications to fields in a detail occurrence apply only to the first display of that
occurrence following map modification.

17-4 CA-ADS Reference

17.3 Attributes Command

 17.3 Attributes Command

Purpose: Modifies a map attribute for one or more map fields.

 Syntax:

��───┬─ BRIGHTen ──┬──�

├─ DARKen ────┤

├─ NORMALize ─┤

├─ PROTect ───┤

└─ UNPROTect ─┘

 �──┬─┬────────────────────┬───── CURrent ───────────────┬────────────────────�

│ └─ all ─┬─ BUT ────┬─┘ │

│ └─ EXCept ─┘ │

├─ ALL ────┬───────────┬─── FIELDS ──────────────────┤

│ ├─ CORrect ─┤ │

 │ └─ ERRor ─┘ │

 │ ┌───────────────┐ │

└─ all ─┬────────────┬─┬─ (─↓── field-name ─┴─) ─┬─┘

└┬─ BUT ────┬┘ └┬─ FIELD ─┬─ field-name ───┘

└─ EXCept ─┘ └─ DFLD ──┘

 �──┬─ PERManent ← ─┬── . ──��

└─ TEMPorary ───┘

 Parameters

BRIGHTen
Displays the specified map fields at brighter-than-normal intensity. A brightened
field appears highlighted on the terminal screen.

DARKen
Displays the specified map fields at darker-than-normal intensity. Characters in a
darkened field do not appear on the terminal screen.

NORMALize
Displays the specified map fields at normal intensity.

PROTect
Enables the input protect attribute for the specified map fields. The user cannot
enter, modify, or delete data in the specified fields.

UNPROTect
Disables the input protect attribute for the specified map fields. The user can
enter, modify, or delete data in the specified fields.

CURrent
Modifies the current map data field only. The current map data field is
determined by the most recent map modification command or map field status
condition test:

■ Map modification command — The current field is the last field named in
an explicit list of map fields or the last map field modified in an implicit list.

An implicit list results from specifying the FOR ALL BUT clause or the FOR
ALL CORRECT/ERROR FIELDS clause in the map modification command.

Chapter 17. Map Commands 17-5

17.3 Attributes Command

An implicit list of map fields is ordered in the sequence in which the fields
are defined in the map that is, top to bottom, left to right).

■ Map field status condition test — The current field is the last field tested in
the explicit or implicit list of fields. An implicit list results from specifying
the ALL/ANY/NONE/SOME FIELDS clause in the map field status condition
test.

�� For more information, see Chapter 8, “Conditional Expressions.”

The runtime system tests the fields in an explicit list from left to right, and
tests the fields in an implicit list in the order in which the fields are defined in
the map (that is, top to bottom, left to right).

Note that a status condition test ends at the first map field that determines the
result of the test. For example, a test is run to determine if any fields in a list
are truncated; the test stops at the first field that is truncated, and that field
becomes the current map field.

17-6 CA-ADS Reference

17.3 Attributes Command

all BUT
Modifies all map data fields except the current field.

EXCEPT can be used in place of BUT.

ALL FIELDS
Accompanies the fields to be modified when CORRECT or ERROR is specified.

CORrect
Modifies all map data fields set to be correct by the automatic error-handling
facility or the dialog.

ERRor
Modifies all map data fields set to be correct by the automatic error-handling
facility or the dialog.

If CORRECT or ERROR is not specified, all map data fields are modified.

all BUT
Introduces the fields to be modified.

The optional keyword BUT modifies all map data fields except the field or fields
specified by field-name.

EXCEPT can be used in place of BUT.

FIELD field-name
Specifies the map data field to be modified.

DFLD can be used in place of FIELD.

PERManent
Specifies permanent modification.

The modification applies to each display of the map associated with the current
dialog as long as the dialog remains operative in the application thread. In a
pageable map, a modification to a map data field of a detail line occurrence
applies throughout the map paging session.

PERMANENT is the default when neither TEMPORARY or PERMANENT is
specified.

TEMPorary
Specifies temporary modification.

The modification applies only to the next display of the map associated with the
current dialog. In a pageable map, a modification to a map data field of a detail
line occurrence applies only to the next time the detail line occurrence is displayed
on the screen during the map paging session.

Chapter 17. Map Commands 17-7

17.3 Attributes Command

 Usage:

Definition: The attributes command provides an alternative format to the MODIFY
MAP command for modification of display intensity or protected status of one or more
map data fields. Only one attribute can be specified in a single attribute command.

The MODIFY MAP command can be used to modify multiple attributes. MODIFY
MAP is discussed later in this section.

17-8 CA-ADS Reference

17.3 Attributes Command

Example: The statements in the example below make up part of a response process
that adds a new CUSTOMER record occurrence to the database. If the user enters a
customer number that is already assigned, the screen is redisplayed with the
CUST-NUMBER field in bright intensity:

FIND CALC CUSTOMER.

IF DB-STATUS-OK

THEN

 DO.

BRIGHTEN FIELD CUST-NUMBER TEMPORARY.

DISPLAY MESSAGE TEXT IS

'CUSTOMER NUMBER ALREADY ASSIGNED.'.

 END.

ELSE

 STORE CUSTOMER.

DISPLAY MESSAGE TEXT IS

'CUSTOMER HAS BEEN ADDED.'.

Chapter 17. Map Commands 17-9

17.3 Attributes Command

 17.4 CLOSE

Purpose: (CA-ADS/Batch only) Closes the dialog input and output file maps.

 Syntax:

��─── CLOSE ───────┬─ BOTH ←─┬─────── file MAPs ─────── . ───────────────────��

├─ INPUT ──┤

└─ OUTPUT ─┘

 Parameters

BOTH
Specifies the dialog's input and output file maps.

BOTH can be specified even if the dialog has only an input or an output file map.

BOTH is the default when no other option is specified.

INPUT
Specifies the dialog's input file map.

OUTPUT
Specifies the dialog's output file map.

17-10 CA-ADS Reference

17.4 CLOSE

 Usage:

 Considerations

■ The runtime system automatically closes the files if an application terminates with
files still open:

– A CLOSE command logically closes a file only if other dialogs using
different maps have accessed the same file.

– A CLOSE command must be issued for each map to physically close a file.

■ The CLOSE command is required when closing a file before the application
terminates, as in the following cases:

– The application has been reading from or writing to a file and is required to
start over at the beginning of the file.

– An output file to which records were written is to be read as an input file.

– A run-unit commit is performed by a COMMIT command or at the end of a
run unit.

If a COMMIT command is issued, but not all files used in the application are
closed, the runtime system either takes no action, sends a warning message to
the log, or abends the application, as specified at system generation or at run
time. The default action is abend.

Chapter 17. Map Commands 17-11

17.4 CLOSE

 17.5 MODIFY MAP

Purpose: Modifies a map write control character (WCC) options and specifies
attributes for map data fields.

 Syntax

��─── MODIFY MAP ──────────┬─ PERManent ← ─┬──────────────────────────────────�

 └─ TEMPorary ─┘

 �─┬───┬────────────────────────────�

└─ CURSOR at ──┬─┬─ FIELD ─┬─ field-name ───┬─┘

│ └─ DFLD ──┘ │

└─ row, column ──────────────┘

 �─┬──────────────────────────────┬───�

 │ ┌────────────────────┐ │

└─ WCC ─↓─┬─┬─ RESETMDT ─┬─┬─┴─┘

│ └─ NOMDT ────┘ │

├─┬─ RESETKBD ─┬─┤

│ └─ NOKBD ────┘ │

├─┬─ ALARM ────┬─┤

│ └─ NOALARM ──┘ │

├─┬─ STARTPRT ─┬─┤

│ └─ NOPRT ────┘ │

└─┬─ NLCR ─┬─────┘

├─ 4HCR ─┤

├─ 64CR ─┤

└─ 8HCR ─┘

 �──┬───�

└─ FOR ─┬─┬────────────────────┬───── CURrent ───────────────┬────────────

│ └─ all ─┬─ BUT ────┬─┘ │

│ └─ EXCept ─┘ │

├─ ALL ────┬───────────┬─── FIELDS ──────────────────┤

│ ├─ CORrect ─┤ │

 │ └─ ERRor ─┘ │

 │ ┌───────────────┐ │

└─ all ─┬────────────┬─┬─ (─↓── field-name ─┴─) ─┬─┘

└┬─ BUT ────┬┘ └┬─ FIELD ─┬─ field-name ───┘

└─ EXCept ─┘ └─ DFLD ──┘

 �──�

 ──┬──────────────┬───────┬──────────────────────────────────┬───────────────

├─ BACKscan ───┤ └─ OUTput DATA is ──┬─ Yes ───────┬┘

└─ NOBACKscan ─┘ ├─ No ────────┤

├─ ERASE ─────┤

└─ ATTribute ─┘

17-12 CA-ADS Reference

17.5 MODIFY MAP

 �──�

 ──┬──────────────────────────┬───────┬──────────────────────┬───────────────

└─ INput DATA is ─┬─ Yes ─┬┘ └┬─ Right ─┬─ JUSTify ─┘

└─ No ─┘ └─ Left ──┘

 �──�

 ──┬───────────────────────────┬──┬────────────────────────┬─────────────────

├─ PAD ─┬─ pad-character ─┬─┤ └─ EDIT is ─┬─ CORrect ─┬┘

│ ├─ LOW-VALUE ─────┤ │ └─ ERRor ───┘

│ └─ HIGH-VALUE ────┘ │

└─ NOPAD ───────────────────┘

 �──�

 ─┬────────────┬─────┬───┬─────────

├─ REQuired ─┤ └─ ERRor ─┬─ MESSAGE ─┬─ is ──┬─ ACTive ───┬──┘

└─ OPTional ─┘ └─ MSG ─────┘ └─ SUPpress ─┘

 �──┬── . ──────────────────────��

 ──┬──┬──┘

 │ ┌─────────────────────────┐ │

└─ ATTRibutes ─↓─┬─── SKIP ───────────┬──┴─┘

├─┬─ ALPHAmeric ─┬───┤

│ └─ NUMeric ────┘ │

├─┬─ PROTected ───┬──┤

│ └─ UNPROTected ─┘ │

├─┬─ DISPlay ─┬──────┤

│ ├─ DARK ────┤ │

│ └─ BRIGHT ──┘ │

├─── DETECTable ─────┤

 ├─┬─ MDT ──┬────────┤

│ └─ NOMDT ─┘ │

├─┬─ BLINK ───┬──────┤

│ └─ NOBLINK ─┘ │

├─┬─ REVerse-video ─┬┤

│ └─ NORMal-video ──┘│

├─┬─ UNDERscore ───┬─┤

│ └─ NOUNDERscore ─┘ │

└─┬─ NOColor ─────┬──┘

├─ BLUe ────────┤

├─ RED ─────────┤

├─ PINk ────────┤

├─ GREen ───────┤

├─ TURquoise ───┤

├─ YELlow ──────┤

└─ WHIte ───────┘

 Parameters

PERManent
Specifies permanent modification.

The modifications apply to each display of the map as long as the dialog remains
operative in the application thread. In a pageable map, a modification to a map
data field of a detail line occurrence applies throughout the map paging session.

PERMANENT is the default when neither TEMPORARY nor PERMANENT is
specified.

Chapter 17. Map Commands 17-13

17.5 MODIFY MAP

TEMPorary
Specifies temporary modification.

The modifications apply only to the next display of the map. In a pageable map,
a modification to a map data field of a detail line occurrence applies only to the
next time the detail line occurrence is displayed on the screen during the map
paging session.

CURSOR
Specifies the cursor position on the terminal screen when the map is displayed.

FIELD field-name
Positions the cursor at the beginning of the named map field.

Field-name specifies a data field in the map associated with the current dialog.

DFLD can be used in place of FIELD.

row

Either the name of a variable data field that contains the row number or the row
number itself, expressed as a numeric constant.

column

Either the name of a variable data field that contains the column number or the
column number itself, expressed as a numeric constant.

The specified row and column numbers must be 1- to 16-digit unsigned integers
and must be valid for the terminal in use. The row and column specifications
must be separated by a blank or a comma.

WCC
Modifies the write control character (WCC) specifications for the map associated
with the current dialog.

RESETMDT
The modified data tags (MDTs) are turned on.

NOMDT
The modified data tags (MDTs) are not turned on.

An MDT marks a data field for transmission to the dialog whether or not it is
modified by the user.

RESETKBD
The keyboard is unlocked when the map is displayed.

NOKBD
The keyboard remains locked when the map is displayed.

ALARM
If installed, the terminal's audible alarm will sound when the map is displayed.

17-14 CA-ADS Reference

17.5 MODIFY MAP

NOALARM
Even if installed, the terminal's audible alarm will not sound when the map is
displayed.

STARTPRT
The contents of the terminal buffer are printed when the map is displayed.

NOPRT
The contents of the terminal buffer are not printed when the map is displayed.

Note: This specification is meaningful only when a 3280-type printer is in use.

NLCR
No line formatting is performed on the printer output. The printer advances to a
new line only when the new line (NL) and carriage return (CR) characters occur.

40CR
Printer output is formatted into 40 characters per line.

64CR
Printer output is formatted into 64 characters per line.

80CR
Printer output is formatted into 80 characters per line.

Note: This specification is meaningful only if the STARTPRT option above is
specified.

If the MODIFY MAP command is used to alter any WCC option, all WCC
options are overridden by the command. Unspecified WCC options default, as
follows:

■ RESETMDT/NOMDT defaults to NOMDT.

■ RESETKBD/NOKBD defaults to NOKBD.

■ ALARM/NOALARM defaults to NOALARM.

■ STARTPRT/NOPRT defaults to NOPRT.

■ NLCR/40CR/64CR/80CR has no default.

FOR
Specifies the map data fields being modified.

all BUT CURrent
Modifies all map data fields except the current field.

EXCEPT can be used in place of BUT.

ALL FIELDS
Introduces which map data fields are to be modified.

CORrect
Modifies all map data fields set to be correct by the automatic error-handling
facility or the dialog.

Chapter 17. Map Commands 17-15

17.5 MODIFY MAP

ERRor
Modifies all map data fields set to be correct by the automatic error-handling
facility or the dialog.

If CORRECT or ERROR is not specified, all map data fields are modified.

all BUT
Introduces the fields to be modified.

The optional keyword BUT modifies all map data fields except the field or fields
specified by field-name.

EXCEPT can be used in place of BUT.

FIELD field-name
Specifies the map data field to be modified.

DFLD can be used in place of FIELD.

BACKscan
The contents of the designated map fields are displayed without trailing blanks.
Characters remaining from the previous display of the map may appear in any
unused positions.

NOBACKscan
The contents of the designated map fields are displayed with trailing blanks.

OUTput DATA is
Clause introducing selections which determine whether data from the dialog's
record buffers and attribute specifications are transmitted to the designated map
fields when the map is displayed. Attribute specifications include all attributes
that can be specified in conjunction with the ATTRIBUTES keyword of the
MODIFY MAP command.

Yes
Data and attribute specifications are transmitted.

No
Data is not transmitted. Data remaining from the previous display of the map
appears in the designated map fields. Attribute specifications for a designated
map field are transmitted only if one of the following conditions is met:

■ The map being displayed is different than the map previously displayed.

■ The designated map field is in error.

ERASE
Data is not transmitted, and data remaining from the previous display of the map
is erased from the designated map fields. Attribute specifications are transmitted.

ATTribute
Attribute specifications are transmitted, but data is not. Data remaining from the
previous display of the map appears in the designated map fields.

INput DATA is
Clause introducing selections which determine whether data entered in the
specified map fields is transmitted to the dialog's record buffers.

17-16 CA-ADS Reference

17.5 MODIFY MAP

Yes
Data in the designated map fields is transmitted to the dialog's record buffers.

No
Data in the designated map fields is not transmitted to the dialog's record buffers.

JUSTify
Introduces how data entered in the designated map fields is justified before it is
transmitted to the dialog's record buffers.

Note: This specification is meaningful for nonnumeric fields only.

Right
Data in the designated map fields is right justified.

Left
Data in the designated map fields is left justified.

PAD pad-character
Specifies whether data entered in the designated map fields is padded before it is
transmitted to the dialog's record buffers.

Data is padded on the left (if RIGHT JUSTIFY is specified) or on the right (if
LEFT JUSTIFY is specified) with the specified pad character.

Pad-character is either the name of a variable data field that contains the pad
character or the actual pad character, enclosed in single quotation marks.

NOPAD
Data in the designated map fields is not padded.

EDIT is
Specifies whether an error flag is set for the designated map fields.

ERRor
An error flag is set for the designated map fields.

CORrect
No error flag is set for the designated map fields.

Note: Error flags cannot be set permanently.

On a mapout operation, if any field is flagged to be in error, then for all fields
both correct and incorrect) only attribute bytes are transmitted; no data is moved
from program variable storage to the screen.

There is one exception to the above rule: on the initial display of a map by a
CA-ADS dialog, all literals and data fields are transmitted even if a field is in
error.

REQuired
The user must enter data in the designated map fields.

OPTional
The user can enter data in the designated map fields, as applicable.

ERRor MESSAGE is
Specifies display or suppression of an error message associated with a field.

Chapter 17. Map Commands 17-17

17.5 MODIFY MAP

ACTive
Enables display of an error message.

A message is usually enabled after ERROR MESSAGE SUPPRESS is specified
within a MODIFY MAP PERMANENT specification.

SUPpress
Disables display of an error message associated with a field.

When the map is redisplayed because of errors, the message defined for the map
field will not be displayed even if the field contains edit errors.

Note: Autoedit errors detected on map in for detail fields within a pageable map
cannot be suppressed unless you turn off autoedit.

ATTRibutes
Applies 3270- and 3279-type terminal display attributes to the designated map
fields.

SKIP
Causes repositioning of the cursor over the designated map fields to the next
unprotected field.

SKIP automatically assigns the NUMERIC and PROTECTED attributes (see
below) to the designated map fields.

ALPHAmeric
The user can enter any data type characters.

Note: ALPHAMERIC cannot be specified if SKIP (see above) is specified.

NUMeric
The user can enter only numeric data type characters.

PROTected
The designated map fields are input protected. The user cannot enter, modify, or
delete data.

UNPROTected
The designated map fields are not input protected. The user can enter, modify, or
delete data.

Note: UNPROTECTED cannot be specified if SKIP (see above) is specified.

DISPlay
The designated map fields are displayed at normal intensity.

DARK
The designated map fields are displayed at darker-than-normal intensity.

Characters in a darkened field do not appear on the terminal screen. DARK
cannot be specified if DETECTABLE (see below) is specified.

BRIGHT
The designated map fields are displayed at brighter-than-normal intensity. A
brightened field appears highlighted on the terminal screen.

17-18 CA-ADS Reference

17.5 MODIFY MAP

DETECTable
Specifies that the designated map fields are detectable by selector light pen.

Note: DETECTABLE cannot be specified if DARK (see above) is specified.

MDT
Modified data tags (MDTs) are turned on for the designated map fields when the
map is displayed.

NOMDT
Modified data tags (MDTs) are not turned on for the designated map fields when
the map is displayed.

BLINK
(3279-type terminals only) The designated map fields are displayed with blinking
characters.

Note: BLINK cannot be specified if either REVERSE-VIDEO or
UNDERSCORE (see below) is specified.

NOBLINK
(3279-type terminals only) Blinking characters are suppressed for the designated
map fields.

REVerse-video
(3279-type terminals only) The designated map fields are displayed with dark
characters on a light background.

Note: REVERSE-VIDEO cannot be specified if either BLINK (see above) or
UNDERSCORE (see below) is specified.

NORMal-video
(3279-type terminals only) The designated map fields are displayed with light
characters on a dark background.

UNDERscore
(3279-type terminals only) The designated map fields are underscored.

Note: UNDERSCORE cannot be specified if either BLINK or
REVERSE-VIDEO (see above) is specified.

NOUNDERscore
(3279-type terminals only) The designated map fields are not underscored.

NOColor
(3279-type terminals only) The designated map fields are displayed with the
default color of the terminal.

BLUE/RED/PINk/GREen/TURquoise/YELlow/WHIte
(3279-type terminals only) The designated map fields are displayed with one of
the seven available color attributes.

Chapter 17. Map Commands 17-19

17.5 MODIFY MAP

 Usage:

 Considerations

■ Multiple attributes to be modified can be specified in a single MODIFY MAP
command. All indicated modifications apply to all specified map data fields in the
command.

If multiple attributes are specified, they must be separated by commas or blanks.

■ The following rules apply to attributes and WCC options that are omitted from a
MODIFY MAP command:

– If an attribute that is not a WCC option is omitted, the attribute remains as
defined at map compilation time or as set by a previous modification
designated as PERMANENT.

– If any WCC option is altered by the MODIFY MAP command, all WCC
options are overridden by the command. Unspecified WCC options are
assigned the default values listed in the syntax rules below.

■ The ERROR MESSAGE clause of the MODIFY MAP statement allows
suppression of a default error message and display of a more appropriate message.
For example, the following error message can be displayed for a part-number field
in an order entry application:

THE SPECIFIED PART CANNOT BE MAILED

Note: Pageable maps cannot have the error message suppressed on map in.

Example: The following statements are part of a response process that adds a new
CUSTOMER record occurrence to the database. The CUST-NUMBER field is
required when adding a customer. If the user does not enter a customer number, an
error flag is set for the CUST-NUMBER field and the field is made required:

IF CUST-NUMBER EQ SPACES

THEN

 DO.

MODIFY MAP TEMPORARY FOR FIELD CUST-NUMBER EDIT ERROR.

MODIFY MAP PERMANENT FOR FIELD CUST-NUMBER REQUIRED.

DISPLAY MESSAGE TEXT IS

'CUSTOMER NUMBER REQUIRED WHEN ADDING CUSTOMER.'.

 END.

ELSE

MODIFY MAP TEMPORARY FOR FIELD CUST-NUMBER EDIT CORRECT OPTIONAL.

17-20 CA-ADS Reference

17.5 MODIFY MAP

 17.6 Pageable maps

A pageable map is a map that contains multiple occurrences of a set of map fields.
Each occurrence of the multiply-occurring set is called a detail occurrence.

A pageable map can contain more detail occurrences than can fit on the user's screen
at one time. The runtime system stores detail occurrences in the order in which they
are created by pageable map commands, and divides them into pages, based on the
number of occurrences that can fit on the screen. One page of occurrences can be
displayed on the screen at a time.

An example of a pageable map is one that displays information about a department
and lists all the employees within the department. The set of map fields related to
employee information occurs once for each employee to be listed. These detail
occurrences of employee information are created at run time by pageable map
commands and can be displayed to the user one page at a time.

17.6.1 Areas of a pageable map

A pageable map is divided into three areas.

Header area: The header area (optional) is located across the top of the screen and
contains one or more rows of map fields associated with header information. The
header area information is displayed whenever the map is displayed.

Detail area: The detail area (required) is located across the middle of the screen
and contains the detail occurrences. Detail occurrence map fields are defined in the
detail area only once. At run time, the number of detail occurrences that are displayed
in the detail area depends on the space available on the screen after accounting for the
header and footer information.

Footer area: The footer area (optional) is located across the bottom of the screen
and contains one or more rows of map fields associated with footer information. The
footer information is displayed whenever the map is displayed.

For example, a pageable map used to display a department record and all associated
employee records might contain the following information:

■ Header area — The title of the map and department information

■ Footer area — A message field, the map page, and information about how to
page through the map

■ Detail area — Detail occurrences of employee information

Chapter 17. Map Commands 17-21

17.6 Pageable maps

 ┌─

 │

 │ DEPT. ID: _____

 │

 └─

 ┌─

 │ EMP. ID: _____ LAST NAME: _______________ ACTION CODE: ___

 │

 │ START DATE: ________ MESSAGE: ________

 │

 │

 │

 └─

 ┌─

 │ PAGE: _____

 │

 │

 │ __

 └─

17.6.2 Map paging session

A map page refers to the header and footer map fields and to a page of detail
occurrences.

When a pageable map is displayed, the page of occurrences that appears in the detail
area is determined by the current value of the $PAGE system-supplied data field. For
example, given a screen that can hold ten occurrences, if $PAGE equals 1, occurrences
1 through 10 are displayed; if $PAGE equals 2, occurrences 11 through 20 are
displayed; and so forth. Actions taken by the user and commands issued by premap
and response processes can modify the value of $PAGE.

�� For more information, see Chapter 11, “Variable Data Fields.”

17-22 CA-ADS Reference

17.6 Pageable maps

Beginning a map paging session: A map paging session begins when a dialog
associated with a pageable map begins execution. A map paging session ends when
the application terminates or when a dialog passes control to another dialog under any
of the following conditions:

■ The dialog receiving control is associated with a different pageable map than the
dialog that initiated the map paging session

■ The dialog receiving control has different map paging dialog options than the
dialog that initiated the map paging session

■ The dialog that initiated the map paging session issues a TRANSFER command

■ The dialog receiving control is at a level higher than the dialog that initiated the
map paging session

Note: The first two conditions do not apply when the receiving dialog is not
associated with a pageable map. In such cases, the map paging session
continues, provided that the third or fourth condition is not met.

If none of the above conditions is met, the map paging session continues. Detail
occurrences created during the session can be added to, displayed, and modified by
dialogs associated with the pageable map. If the map paging session terminates, the
runtime system deletes all detail occurrences created during the session.

One or more dialogs can be associated with the same pageable map in a given map
paging session. During a map paging session, premap and response process commands
can create, display, retrieve, and modify detail occurrences.

Considerations: The following considerations apply:

■ Detail occurrences are created by PUT NEW DETAIL process commands.
Detail occurrences are built from the values stored in the variable data fields to
which the detail occurrence fields map.

The runtime system stores detail occurrences in the order in which they are
created and divides them into pages, based on the number of detail occurrences
that can fit on the screen at one time. A detail occurrence is displayed on the
screen only when the map page to which the occurrence belongs is displayed.

■ A dialog process displays a map page to the terminal as a result of either of the
following actions:

– A PUT NEW DETAIL command is issued that creates the first detail
occurrence of the second map page. The runtime system automatically
displays the first map page, allowing the user to enter information.

The process that issues the PUT NEW DETAIL command continues to
execute and can create additional detail occurrences. The process must issue
a DISPLAY command to terminate processing. The runtime system does not
process information entered during a pseudo-converse until the DISPLAY
command is issued.

Chapter 17. Map Commands 17-23

17.6 Pageable maps

Note: In this case, the DISPLAY command does not send information to the
terminal. Header and footer variable data fields should be primed
before the first map page is displayed. If the map contains a message
field in the header or footer area, any text for the message field should
be specified once by issuing a PUT NEW DETAIL command before
the first map page is displayed.

– A DISPLAY command is issued, except when the map has already been
displayed as a result of a PUT NEW DETAIL command. The map page
displayed is determined by the current value of $PAGE.

�� For more information, see Chapter 11, “Variable Data Fields.”

■ The user can modify map data fields on the screen, including header and footer
data fields and detail occurrence fields of the current map page. Restrictions that
apply include those specified in the map definition (such as the PROTECT
specification), in the dialog definition (that is, the paging mode dialog option,
UPDATE/BROWSE), and by process commands (such as the MODIFY MAP
command).

■ The user can make a paging request to specify the next map to be displayed by
performing one of the following actions:

– Pressing the control key associated with paging forward one page. The
system generation default paging-forward key is PF8.

– Pressing the control key associated with paging backward one page. The
system generation default paging-backward key is PF7.

– Changing the $PAGE map field (if one is defined for the map) and pressing a
control key other than the paging-forward key, paging-backward key, [Clear],
[PA1], [PA2], or [PA3]

■ The user presses a control key, including the paging-forward or paging-backward
key, and the runtime system performs the following processing:

– Updates map data fields — The runtime system updates its internal
representation of the header and footer map data fields and updates detail
occurrence fields to reflect changes made by the user. No updates are
performed if [Clear], [PA1], [PA2], or [PA3] are pressed; these control keys
do not transmit data.

Map field attributes set temporarily by the user or by map modification
commands are reset. Attributes set permanently in the map definition or by
map modification commands remain set.

– Updates $PAGE — If a paging request was made, the runtime system
updates $PAGE as follows:

— Adds 1 to $PAGE if the paging forward key was pressed and the current
map page is not the last map page.

— Subtracts 1 from $PAGE if the paging backward key was pressed and the
current map page is not the first map page.

17-24 CA-ADS Reference

17.6 Pageable maps

— Moves the value entered in the $PAGE map field to $PAGE if the
$PAGE map field was changed and the control key pressed was not the
paging forward key, the paging backward key, [Clear], [PA1], [PA2], or
[PA3]. If the value entered in the $PAGE field is less than the first map
page or greater than the last map page, $PAGE is set to the first or last
page number.

$PAGE determines the next map page to be displayed.

– Determines the flow of control — In a session that is not a map-paging
session, the runtime system always attempts to initiate a function or response
process when the user presses a control key. In a map paging session, the
runtime system either attempts to initiate a function or response process, or
instead displays the same or another map page. The action taken by the
runtime system depends on the paging-type dialog option
(NOWAIT/WAIT/RETURN), on whether a paging request was made, and
whether any map field's modified data tag was set, as shown in the following
table.

Flow of control in a map paging session:

Paging type Paging request8 Nonpaging request

No MDT set Any MDT
set=

No MDT set Any MDT set=

NOWAIT Displays the
requested map
page

Displays the
requested map
page

Initiates a
function or
response
processk

Redisplays the
same map page

WAIT Displays the
requested map
page

Initiates a
function or
response
processk

Initiates a
function or
response
processk

Initiates a
function or
response
processk

RETURN Initiates a
function or
response
processk

Initiates a
function or
response
processk

Initiates a
function or
response
processk

Initiates a
function or
response
processk

Notes:

i A paging request occurs when the user presses a control key associated with paging
forward or backward or modifies the $PAGE field, if one is defined for the map. If
[Clear], [PA1], [PA2], or [PA3] is pressed, any modification to $PAGE is ignored and
is not considered as a paging request. If a paging request is not made, refer to the
Nonpaging request columns.

j If the control key pressed is [Clear], [PA1], [PA2], or [PA3], refer to the No MDT
set column under the applicable Paging/Nonpaging request column.

Chapter 17. Map Commands 17-25

17.6 Pageable maps

k The function or response is selected as described under "Runtime flow of control" in
Chapter 16, “Database Access Commands.”

If the same or another map page is displayed, the user can modify map fields, make a
paging request, and press a control key, as described above.

If a function or response process is initiated, the internal representations of the header
and footer fields are mapped into their associated variable data fields.

■ Detail occurrences are retrieved

 by GET DETAIL process commands. A GET DETAIL command locates the
occurrence to be retrieved, then moves the occurrence's fields into the variable
data fields to which the fields map.

■ Only modified detail occurrences can be retrieved. A detail occurrence is
considered to be modified if it has the following two characteristics:

– Contains one or more map fields whose modified data tags (MDTs) are set at
the time of the most recent pseudo-converse.

– Has yet to be retrieved since the most recent pseudo-converse. Once a
modified detail occurrence has been retrieved, it is no longer considered to be
modified.

Note that if a modified detail occurrence is not retrieved following a
pseudo-converse, it is not automatically considered to be modified following a
subsequent pseudo-converse. The detail occurrence must once again have the
two characteristics listed above.

A detail occurrence that is not a modified detail occurrence cannot be retrieved by
dialog process code.

■ Detail occurrence fields are modified in dialog processes by PUT CURRENT
DETAIL commands. A PUT CURRENT DETAIL command modifies the detail
occurrence referenced by the most recent GET DETAIL or PUT DETAIL
command.

■ Additional detail occurrences can be created by PUT NEW DETAIL
commands. New occurrences are stored at the end of the set of detail
occurrences.

■ Detail occurrences cannot be deleted by process commands. Detail
occurrences are deleted as follows:

– If the backpage dialog option (described below) is NO, detail occurrences of
previous map pages are deleted when a new map page is displayed.

– At the end of a map paging session, all detail occurrences are deleted.

17-26 CA-ADS Reference

17.6 Pageable maps

17.6.3 Map paging dialog options

Map paging dialog options define parameters for a map paging session. Specification
of options for a dialog are made during dialog definition. The map paging dialog
options NOWAIT, BACKPAGE NO, and UPDATE cannot be specified together.

The following table lists available map paging dialog options.

Map paging dialog options

Notes:

i On mapin from the terminal when backpaging is not allowed, if $PAGE has been set
to a value greater than the current map page, the runtime system flags all map pages

Option Parameter Description

Paging type NOWAIT
WAIT
RETURN

Specifies the runtime flow of control
when the user presses a control key,
as described in the previous table.

Backpage BACKPAGE
YES

Allows the user to display a previous
map page. The runtime system
maintains the resources that describe
the detail occurrences of previous
pages.

BACKPAGE
NO

Prohibits the user from displaying a
previous map page. The runtime
system deletes all previous pages of
detail occurrences when a new map
page is displayed. The lowest page
number is the first page that has not
been deleted.i

Paging mode UPDATE Specifies that the terminal operator
can modify map data fields, subject to
restrictions specified in the mapping
facility and by map modification
process commands.

BROWSE Specifies that the user can modify
only the $PAGE and $RESPONSE
fields of the map. Map fields can
still have their MDTs set in the map
definition or by map modification
commands.

Chapter 17. Map Commands 17-27

17.6 Pageable maps

below $PAGE for deletion. When the map is displayed again, these flagged pages are
deleted, even if $PAGE has been modified to a lower value in the interim.

 17.6.4 GET DETAIL

Purpose: Retrieves a modified detail occurrence of a pageable map.

A GET DETAIL command can retrieve all the fields of a modified detail occurrence
or only those fields whose MDTs are turned on.

 Syntax:

��── GET DETail─┬───┬─�

├┬─ NEXt ← ─┬─┬──┬┤

│└─ FIRst ─┘ └─ RETurn KEY into data-field-name-variable ─┘│

└─ KEY ────┬──────┬──── key-number ─────────────────────────┘

├─ IS ─┤

 └─ = ─┘

 �────────┬─────────────────────────┬─── . ───────────────────────────────────��

├─ ALL ← ────┬── FIElds ──┘

└─ MODified ─┘

 Parameters

NEXt
Retrieves the first modified detail occurrence that follows the detail occurrence
referenced by the preceding pageable map command.

The preceding pageable map command must follow the most recent
pseudo-converse.

FIRst
Retrieves the first modified detail occurrence of the pageable map.

Note that the GET DETAIL FIRST command can be used repeatedly to retrieve
all the modified detail occurrences of a pageable map. The first GET DETAIL
FIRST command retrieves the first modified detail occurrence. Once retrieved,
the occurrence is no longer considered as modified, and the second modified detail
occurrence becomes the first modified detail occurrence. This modified detail
occurrence can be retrieved by a subsequent GET DETAIL FIRST command, and
so forth.

An end-of-data condition results if no pageable map command precedes the GET
DETAIL command, if the preceding pageable map command resulted in an
end-of-data or detail-not-found (see the KEY IS parameter below) condition or if
the GET DETAIL command cannot find a modified detail occurrence before
reaching the end of the set of detail occurrences.

RETurn KEY into data-field-name-variable
Specifies the numeric variable field into which the runtime system moves the
binary fullword value (if any) associated with the detail occurrence being
retrieved. A value is associated with a detail occurrence by specifying the KEY
IS parameter in a PUT DETAIL command.

17-28 CA-ADS Reference

17.6 Pageable maps

If no value is associated with the detail occurrence, data-field-name-variable is set
to zero. Data-field-name-variable does not have to be a binary fullword.

KEY is key-number
Specifies the modified detail occurrence to be retrieved based on the numeric key
value associated with the detail occurrence. A key value is associated with a
detail occurrence by specifying the KEY IS parameter in a PUT DETAIL
command.

Key-number is either the numeric variable data field or the numeric literal itself.

The runtime system finds the first detail occurrence associated with the key value
specified by key-number. If the detail occurrence is a modified detail occurrence,
it is retrieved. If the occurrence is not a modified detail occurrence, or if no detail
occurrence with the specified key value is found, a detail-not-found condition is
set.

ALL
Specifies all the fields of the modified detail occurrence to be retrieved.

ALL is the default when neither ALL or MODIFIED is specified.

MODified
Specifies only those fields whose MDTs are turned on to be retrieved.

If MODIFIED is specified, variable data fields that map to nonretrieved fields
retain their previous values.

 Usage

 Considerations:

■ The GET DETAIL command causes the runtime system to move the following:

– The retrieved fields into the variable data fields to which they map

– The page number of the retrieved detail occurrence into the $PAGE
system-supplied data field

– The numeric key value (if any) associated with the occurrence into a specified
field (optional)

■ A GET DETAIL command can retrieve only a modified detail occurrence. A
detail occurrence is considered modified if it has the following characteristics:

– Contains one or more map fields whose modified data tags (MDTs) are turned
on at the time of the most recent pseudo-converse.

– Has yet to be retrieved. Once a modified detail occurrence has been
retrieved, it is no longer considered modified.

■ A detail occurrence that is not a modified detail occurrence cannot be retrieved by
dialog process code.

Chapter 17. Map Commands 17-29

17.6 Pageable maps

 17.6.5 PUT DETAIL

Purpose: The PUT DETAIL command:

■ creates or modifies a detail occurrence of a pageable map

■ specifies a numeric value to be associated with the occurrence

■ specifies a message to appear in the message field of the occurrence.

 Syntax:

��─── PUT ──┬──┬────�

├─ NEW ← ───┬──── DETail ───┬──────────────────────────────┬─┘

└─ CURRent ─┘ └─ KEY ─┬──────┬─ key-number ──┘

├─ IS ─┤

 └─ = ─┘

 �───┬────────────────────────────────────┬── . ──────────────────────────────��

└─┬─ MESSAGE ─┬── message-options ───┘
└── MSG ────┘

Expansion of message-options

��────┬─ TEXT ─────┬──────┬────────── message-text ───────────────────────────�

│ ├─ IS ─┤

 │ └─ = ─┘

└─ CODE ─────┬──────┬────────── message-code ───────────────────────────

├─ IS ─┤

 └─ = ─┘

 �──�

 ────┬───┬───────────────────────

 │ ┌──────────────┐ │

└─ PARMS ────┬─────┬─── (─↓── parameter ─┴─) ──┘

└─ = ─┘

 �──┬───────────────────────��

 ────┬──┬──────┘

└─ PREFIX ───┬──────┬─────── prefix ─────┘

├─ IS ─┤

 └─ = ─┘

 Parameters

NEW DETail
Creates a detail occurrence which is stored at the end of the set of detail
occurrences.

NEW is the default when neither NEW or CURRENT is specified.

CURRent DETail
Modifies the detail occurrence referenced by the most recent pageable map
command.

After a pseudo-converse, a pageable map command must be issued to establish
currency on a detail occurrence before a PUT CURRENT DETAIL command can
be issued. If currency is not established, CA-ADS abnormally terminates the
dialog.

17-30 CA-ADS Reference

17.6 Pageable maps

KEY is key-number
Specifies the numeric value to be associated with the detail occurrence being
created or modified.

Key-number is either the name of a variable data field or the number itself,
expressed as a numeric constant.

Key-number replaces the numeric value (if any) previously associated with the
detail occurrence. The numeric value is not displayed at the terminal, but is
stored along with the detail occurrence as a binary fullword.

The KEY parameter can be used to store the database key of a subschema record
associated with a detail occurrence. A GET DETAIL command can later retrieve
the database key when it retrieves the detail occurrence, facilitating the retrieval of
the subschema record.

MESSage
Introduces the text or code of a message.

MSG can be used in place of MESSAGE.

message-options
Identifies message to be displayed.

Expanded syntax for message-options is shown above immediately following the
PUT DETAIL syntax.

TEXT is message-text
Specifies the text of a message to be displayed in an online map's message field or
sent to a batch application and a system log file.

Message-text specifies either the name of a variable data field containing the
message text or the text string itself, enclosed in single quotation marks.

The text string can contain up to 240 displayable characters.

 CODE is message-code
Specifies the message dictionary code of a message to be displayed in an online
map's message field or sent to the log file in a batch application.

In a batch application, the message is also sent to the operator, if directed by the
destination specified in the dictionary.

Message-code specifies either the name of a variable data field that contains the
message code or the 6-digit code itself, expressed as a numeric literal.

PARMS = parameter
Specifies a replacement parameter for each variable field in the stored message
identified by message-code.

Up to nine replacement parameters can be specified for a message. Multiple
parameters must be specified in the order in which they are numbered and
separated by blanks or commas.

Parameter specifies either the name of an EBCDIC or unsigned zoned decimal
variable data field that contains the parameter value or the parameter value itself,
enclosed in single quotation marks.

Chapter 17. Map Commands 17-31

17.6 Pageable maps

The parameter value must contain displayable characters. At run time, each
variable data field in a stored message expands or contracts to accommodate the
size of its replacement parameter. A replacement parameter can be a maximum of
240 bytes.

PREFIX is prefix
Overrides the default prefix of a dialog and a map.

Prefix specifies an EBCDIC or unsigned zoned decimal variable data field that
contains a 2-character prefix or the 2-character prefix itself, enclosed in single
quotation marks.

17.6.6 Creating or modifying a detail occurrence of a pageable map

After a PUT DETAIL command is executed, the map fields of a created or modified
occurrence contain the values of the variable data fields to which they map. The
created or modified occurrence appears on the user's screen when the map page to
which it belongs is displayed.

Storage: The amount of storage available at run time to hold detail occurrences is
specified at system generation with the PAGING STORAGE clause of the OLM
statement. By default, the available storage is 10K bytes. If a PUT DETAIL
command would cause storage overflow, the detail occurrence is not created and the
$MAXIMUM-DETAILS-PUT map paging condition is set. The
$MAXIMUM-DETAILS-PUT condition can be tested.

�� For more information about $MAXIMUM-DETAILS-PUT, see Chapter 8,
“Conditional Expressions.”

For information on calculating the storage required by a pageable map, refer to
CA-IDMS Mapping Facility.

17.6.7 Specifying a numeric value associated with an occurrence

A numeric value, such as a database key, can be associated with a created or modified
detail occurrence.

This value is not displayed to the user, but can be retrieved by a GET DETAIL
command.

17.6.8 Specifying a message to appear in the message field of an
occurrence

The text of a message or a code associated with a message that has already been
defined in the message dictionary can be specified in a PUT DETAIL command.
When the dialog is executed, the runtime system moves the appropriate message to the
message field in the dialog's map.

17-32 CA-ADS Reference

17.6 Pageable maps

A message field is defined by the $MESSAGE map field.

�� For more information, refer to CA-IDMS Mapping Facility.

If no message field is defined for the detail area of the pageable map, the runtime
system places the message in the header or footer message field or, if neither the
header nor the footer has a message field, the runtime system ignores the message. If
more than one message is placed in the header or footer message field, the messages
are concatenated up to the length of the message field.

Considerations: The following considerations apply to specifying a message code
in a PUT DETAIL command:

■ Each system-supplied message in the data dictionary message area (DDLDCMSG)
is identified by a six-digit code prefixed by the letters DC. For example, a request
for message 987654 retrieves message DC987654.

User-defined messages added to the message dictionary can have a prefix other
than DC and digits in the range 900001 through 999999.

■ Each message in the message dictionary can be assigned a severity code. The
severity code specifies the action CA-ADS takes when a message is retrieved.
The following table lists the severity codes and their associated actions.

■ A message in the message dictionary can contain one or more variable fields that
are replaced with application-specific values at run time. In a PUT DETAIL
command, the application developer can use the PARMS parameter to code
replacement parameters for each variable field in a specified message.

Severity code Action

0 Processes the PUT DETAIL command

1 Snaps all CA-ADS resources and processes the PUT DETAIL
command

2 Snaps all system areas and processes the PUT DETAIL command

3 Snaps all CA-ADS resources and terminates CA-ADS with a task
abend code of D002

4 Snaps all system areas and terminates CA-ADS with a task abend
code of D002

5 Terminates CA-ADS with a task abend code of D002

8 Snaps all system areas and terminates the DC system with an
operating system abend code of 3996

9 Terminates the DC/UCF system with an operating system abend
code of 3996

Chapter 17. Map Commands 17-33

17.6 Pageable maps

Within the message definition in the dictionary, symbolic parameters are identified
by an ampersand (&) followed by a two-digit numeric identifier. These identifiers
can appear in any order. The position of the replacement values in the PARMS
parameter must correspond directly to the two-digit numeric identifiers in the
message; the first value corresponds to &01, the second to &02, and so forth. For
example, assume that the stored message text is as follows:

THIS IS TEXT &H1 AND &H3 OR &H2

The PARMS parameter reads PARMS=('A','B','C'). The resulting text would read
as follows:

THIS IS TEXT A AND C OR B

■ If the message is defined in the dictionary with more than one text line, only the
first line appears in the map's message field.

Example: The example below illustrates the map and the premap and response
processes of a dialog that:

■ Lists the employees in a department one page at a time

■ Allows the user to modify employee information and delete employees

■ Updates the database based on the user's entries

■ Redisplays the map with appropriate messages and allows the user to make further
modifications

The paging type in this example is WAIT. If the user makes a paging request and no
MDTs are set, the runtime system displays the requested page. If the user makes a
nonpaging request or if any MDTs are set, the runtime system initiates the response
process. The response process is associated with the control keys ENTER, FWD
(paging forward), and BWD (paging backward).

The pageable map associated with the dialog is shown in the screen that follows. The
following considerations apply to the detail area map fields:

■ The fields are defined once. At run time, the number of occurrences of these
fields that are displayed to the user at any one time depends on the number of
occurrences that can fit on the screen between the header and footer areas.

■ At run time, the fields map to variable data fields through detail occurrences:

– PUT NEW DETAIL commands create detail occurrences from associated
variable data fields.

– When a map page is displayed, the detail occurrences for the page are
displayed.

– When the user presses a control key, the appropriate detail occurrence fields
are updated.

– GET DETAIL commands can retrieve modified detail occurrences into
associated variable data fields.

17-34 CA-ADS Reference

17.6 Pageable maps

■ The fields map to work record data fields and not directly to EMPLOYEE
database record elements. This facilitates the update of EMPLOYEE database
records in the response process.

 ┌─

 │ i

 │ DEPT. ID: _____

 │

 └─

 ┌─ j k l

 │ EMP. ID: _____ LAST NAME: _______________ ACTION CODE: ___

 │ m n

 │ START DATE: ________ MESSAGE: ________

 │

 │

 │

 │

 │

 │

 │

 │

 └─

 ┌─ o

 │ PAGE: _____

 │

 │

 │ q

 │ __

 └─

Notes:

1. Maps to DEPT-ID of DEPARTMENT database record

2. Maps to WK-EMP-ID through detail occurrence

3. Maps to WK-EMP-LNAME through detail occurrence

4. Maps to WK-ACTION through detail occurrence

5. Maps to WK-EMP-START-DATE through detail occurrence

6. Maps to $MESSAGE through detail occurrence

7. Maps to $PAGE system-supplied data field

8. Maps to WK-MESSAGE

Sample premap process: The premap process shown below performs the
following:

■ Obtains a DEPARTMENT record based on a CALC key passed from another
dialog or function

■ Obtains all associated EMPLOYEE records

■ Creates a detail occurrence for each retrieved record

■ Displays the first map page at the terminal

Chapter 17. Map Commands 17-35

17.6 Pageable maps

OBTAIN CALC DEPARTMENT.

 IF DB-REC-NOT-FOUND

 THEN

 DO.

MOVE 'DEPARTMENT NOT FOUND' TO WK-MESSAGE.

 DISPLAY.

 END.

MOVE SPACES TO WK-ACTION.

OBTAIN FIRST EMPLOYEE WITHIN DEPT-EMPLOYEE.

WHILE NOT DB-END-OF-SET

 REPEAT.

MOVE EMP-ID TO WK-EMP-ID.

MOVE EMP-LNAME TO WK-EMP-LNAME.

MOVE EMP-START-DATE TO WK-EMP-START-DATE.

ACCEPT DB-KEY INTO WK-KEY FROM CURRENCY.

PUT NEW DETAIL KEY WK-KEY.

 IF $PAGE-READY

 THEN

 DO.

MOVE 'MORE EMPLOYEES EXIST FOR THIS DEPT' TO WK-MESSAGE.

 DISPLAY.

 END.

OBTAIN NEXT EMPLOYEE WITHIN DEPT-EMPLOYEE.

 END.

MOVE 'ALL EMPLOYEES DISPLAYED FOR THIS DEPT' TO WK-MESSAGE.

 DISPLAY.

Sample response process: The response process shown below performs the
following:

■ Retrieves each modified detail occurrence.

■ Updates the EMPLOYEE database accordingly.

■ Modifies each retrieved detail occurrence:

– Moves a confirming message to the message field

– Initializes the action code

– Protects the fields if the associated database record is deleted

■ Redisplays the map. The value of $PAGE is saved at the beginning of the
response process and is restored at the end in order to display the page requested
by the user. During the response process, $PAGE is modified by GET DETAIL
commands.

17-36 CA-ADS Reference

17.6 Pageable maps

READY USAGE-MODE UPDATE.

MOVE $PAGE TO WK-PAGE.

GET DETAIL FIRST RETURN KEY WK-KEY.

WHILE NOT $END-OF-DATA

 REPEAT.

OBTAIN EMPLOYEE DB-KEY IS WK-KEY.

IF WK-ACTION EQ 'DEL'

 THEN

 DO.

 ERASE EMPLOYEE.

PROTECT (WK-EMP-ID WK-EMP-LNAME

WK-EMP-START-DATE WK-ACTION) PERMANENT.

MOVE SPACES TO WK-ACTION.

PUT CURRENT DETAIL TEXT 'DELETED'.

 END.

 ELSE

 DO.

MOVE WK-EMP-LNAME TO EMP-LNAME.

MOVE WK-EMP-START-DATE TO EMP-START-DATE.

 MODIFY EMPLOYEE.

MOVE SPACES TO WK-ACTION.

PUT CURRENT DETAIL TEXT 'MODIFIED'.

 END.

GET DETAIL NEXT RETURN KEY WK-KEY.

 END.

MOVE WK-PAGE TO $PAGE.

 DISPLAY.

Chapter 17. Map Commands 17-37

17-38 CA-ADS Reference

Chapter 18. Queue and Scratch Management
Commands

18.1 Overview . 18-3
18.2 Queue records . 18-5
18.3 DELETE QUEUE . 18-7
18.4 GET QUEUE . 18-9
18.5 PUT QUEUE . 18-12
18.6 Scratch records . 18-15

18.6.1 CA-ADS usage . 18-15
18.6.2 CA-ADS/Batch considerations . 18-16

18.7 DELETE SCRATCH . 18-17
18.8 GET SCRATCH . 18-19
18.9 PUT SCRATCH . 18-22

Chapter 18. Queue and Scratch Management Commands 18-1

18-2 CA-ADS Reference

18.1 Overview

 18.1 Overview

CA-ADS queue and scratch management commands are used to control the allocation
and access of queue and scratch records. Queue and scratch records are work records
stored in the data dictionary that allow data to be passed from one CA-IDMS/DC or
CA-IDMS/UCF (DC/UCF) task to another.

Note: During the execution of a CA-ADS application, each pseudo-converse is a new
task.

For more information on DC/UCF tasks in the CA-ADS environment, see
Chapter 4, “CA-ADS Runtime System.”

Queue records: Queue records are stored in the data dictionary queue area
(DDLDCRUN). Use of queue records allows data to be passed from one DC/UCF
task or batch application to another.

Scratch records: Scratch records are temporarily maintained in the data dictionary
scratch area (DDLDCSCR). Under CA-ADS/Batch, scratch records can be stored in
and retrieved from a scratch file allocated by the site. Use of scratch records allows
data to be passed between tasks or dialogs.

Queue and scratch management commands: Queue and scratch management
commands are summarized in the following table. Each command is discussed later in
this section.

Chapter 18. Queue and Scratch Management Commands 18-3

18.1 Overview

Type Command Description

Queue
management

DELETE
QUEUE

Deletes one or all queue records in a
specified queue.

GET QUEUE Transfers the contents of a queue record to a
specified location in a dialog's record buffers
and, optionally, deletes the record from the
queue.

PUT QUEUE Stores a queue record in the data dictionary
and assigns a queue id.

Scratch
management

DELETE
SCRATCH

Deletes one or all scratch records associated
with a specified scratch area.

In CA-ADS/Batch, one or all scratch records
associated with a specified scratch file are
deleted.

GET SCRATCH Transfers the contents of a scratch record to
a specified location in a dialog's record
buffers and, optionally, deletes the record.

In CA-ADS/Batch, the contents of a scratch
record are transferred to a specified location
and a scratch file is assigned to the record.

PUT SCRATCH Stores or replaces a scratch record in the data
dictionary and assigns a scratch area id.

In CA-ADS/Batch, a scratch record is stored
or replaced in the scratch file and assigned a
scratch area id.

18-4 CA-ADS Reference

18.2 Queue records

 18.2 Queue records

Overview: Queue records are available to all tasks running under DC/UCF, as well
as to batch programs. Records in a queue established by one task are available to
subsequent tasks running on the same logical terminal, or to concurrent or subsequent
tasks running on any other terminal. Queue records are saved across system
shutdowns and are recovered across a system crash.

Because queue records are available to concurrent tasks running on other terminals, the
records can be used to pass data from one application to another. Additionally, queue
records provide a convenient means of storing data for subsequent processing.

Storing a queue record: A queue record is stored in the data dictionary as a
member occurrence in a set owned by a queue header record. All records associated
with a particular queue header are referred to collectively as a queue. The queue is
identified by a queue id. Requests to access a queue record can use the queue id to
specify the queue in which the object record participates. If a request to store a queue
record specifies an unknown queue id, a queue is created with the specified id.

When a queue record is stored, DC/UCF can return a queue record identifier to a
specified location in a dialog's record buffers. The queue record identifier can then be
used to access the queue record.

Currencies: The CA-ADS runtime system maintains currencies for each queue
accessed by a task. If concurrently executing tasks access the same queue, each task
has its own queue currency. A request for a particular queue record can identify the
record by the queue id, by the queue record id, by the position of the record within the
queue, or by the relationship of the object record to the record that is current of queue
for the requesting task.

Queue records remain in the data dictionary until explicitly deleted or until the
retention period specified for the queue has expired. When all records associated with
a given queue header have been deleted, the header record is also deleted and the
queue no longer exists.

 Considerations

■ An exclusive lock is placed on a queue record when the record is retrieved or
stored, thereby preventing concurrently executing tasks from accessing the same
record. Queue record locks are released when the task terminates or when a
COMMIT command with the TASK keyword is executed.

�� For information about the COMMIT command, see Chapter 16, “Database
Access Commands.”

Because no other task can access a locked queue record, a concurrently executing
task that attempts to access the record must wait until the lock is released. To
minimize such waits, queue access should be as brief as possible.

Chapter 18. Queue and Scratch Management Commands 18-5

18.2 Queue records

■ Queue currencies are not saved when a task terminates. Each task must establish
its own currencies. The following considerations apply:

– Queue currencies are lost each time a DISPLAY command is executed.

– Queue currencies are lost across a system shutdown or a system crash.

■ All queue management command clauses must be coded in the same order in
which they appear in the syntax.

■ Queue management commands are allowed in CA-ADS/Batch only if the
application is running under the central version.

18-6 CA-ADS Reference

18.3 DELETE QUEUE

 18.3 DELETE QUEUE

Purpose: Deletes a queue or queue record.

 Syntax:

��─── DELETE QUEUE ────┬────────────────┬───────────┬─ ALL ───────┬───────────�

└─ ID queue-id ──┘ └─ CURRENT ← ─┘

 �───┬────────────────────┬─────── . ───��

└─ error-expression ─┘

 Parameters

ID queue-id
Specifies the queue or queue record associated with queue-id to be deleted.

Queue-id is the name of a variable data field that contains a queue id or the 1- to
16-character id itself, enclosed in single quotation marks.

If queue-id is not specified, a null queue id (that is, 16 blanks) is assumed.

ALL
Deletes all records, including the queue header record, in the queue specified by
queue-id.

CURRENT
Deletes the record that is current of queue for the requesting task.

CURRENT is the default when you specify neither CURRENT or ALL.

error-expression
Specifies the status codes that are returned to the dialog.

�� For information about error expressions, see Chapter 10, “Error Handling.”

 Usage

Considerations: If autostatus is not in use, a dialog's error-status field indicates the
outcome of a DELETE QUEUE command:

Status Code Meaning

0000 The request was executed successfully

4404 The requested header record cannot be found

4405 The requested queue record cannot be found

4406 Currency was not established for the object queue record

4407 An I/O error occurred during processing

4431 The CA-ADS internal parameter list was invalid

Chapter 18. Queue and Scratch Management Commands 18-7

18.3 DELETE QUEUE

�� The autostatus facility is described in Chapter 10, “Error Handling.”

Example: The following example illustrates the use of the DELETE QUEUE
command to delete the current record from queue CUSTQ:

DELETE QUEUE ID 'CUSTQ'.

18-8 CA-ADS Reference

18.4 GET QUEUE

 18.4 GET QUEUE

Purpose: Transfers the contents of a queue record to a specified location in a
dialog's record buffers.

 Syntax:

��─── GET QUEUE ───────┬───────────────┬──────────────────────────────────────�

└─ ID queue-id ─┘

 �───┬─ DELETE ← ─┬────────────────┬─ NOWAIT ← ─┬─────────────────────────────�

└─ KEEP ─────┘ └─ WAIT ─────┘

 �───── INTO return-queue-data-location-variable ─────────────────────────────�

 �───┬──┬───────────────────────────────�

├─ TO end-queue-data-location-variable ──┤

└─ MAX LENGTH queue-data-max-length ─────┘

 �───┬─ FIRST ───────────────────────┬──�

├─ LAST ────────────────────────┤

├─ NEXT ← ──────────────────────┤

├─ PRIOR ───────────────────────┤

├─ SEQUENCE sequence-number ────┤

└─ RECORD ID queue-record-id ───┘

 �───┬───┬────────────�

└── RETURN LENGTH into queue-data-actual-length-variable ───┘

 �───┬────────────────────┬────── . ──��

└─ error-expression ─┘

 Parameters

ID queue-id
Specifies the queue-id to be retrieved.

Queue-id is either the name of a variable data field that contains a queue id or the
1- to 16-character queue id itself, enclosed in single quotation marks.

If queue-id is not specified, a null queue id (that is, 16 blanks) is assumed.

DELETE
Deletes the record from the queue after it is passed to the requesting task. If the
record is truncated, the truncated data may be lost permanently.

DELETE is the default when you specify neither DELETE or KEEP.

KEEP
Retains the record in the queue after it is passed to the requesting task.

NOWAIT
Continues task execution in the event of a nonexistent queue. NOWAIT is the
default when you specify neither NOWAIT or WAIT.

WAIT
Suspends task execution until the requested queue exists.

Chapter 18. Queue and Scratch Management Commands 18-9

18.4 GET QUEUE

INTO return-queue-data-location-variable
Specifies the location to which the requested queue record is transferred.

Return-queue-data-location-variable is the name of a variable data field in the
dialog's record buffers.

TO end-queue-data-location-variable
Specifies the end of the buffer area allocated for the requested queue record.

End-queue-location-variable is either the name of a dummy byte field or the name
of a variable data field that contains a data item not associated with the requested
queue record. The field specified by end-queue-data-location must immediately
follow the last byte of the buffer area allocated for the requested queue record.

MAX LENGTH queue-data-max-length
Specifies the length of the buffer area allocated for the requested queue record.

Queue-data-max-length is either the name of a variable data field that contains the
length of the buffer area allocated for the requested queue record or the length
itself, expressed as a numeric constant.

If neither TO end-queue-data-location-variable nor MAX LENGTH
queue-data-max-length is specified, the length of the location is the length of
return-queue-data-location-variable.

FIRST
Obtains the first record in the queue that is specified by queue-id.

LAST
Obtains the last record in the queue that is specified by queue-id.

NEXT
Obtains the record that follows the current record of the queue specified by
queue-id.

NEXT is the default when you specify no other queue record to be obtained.

If currency is not established, NEXT is equivalent to FIRST.

PRIOR
Obtains the record that precedes the current record in the queue specified by
queue-id.

If currency is not established, PRIOR is equivalent to LAST.

SEQUENCE sequence-number
Obtains the nth record in the queue specified by queue-id.

Sequence-number is either the name of a variable data field that contains the
sequence number or the sequence number itself, expressed as a numeric constant.

RECORD ID queue-record-id
Obtains the record identified by queue-record-id.

Queue-record-id is either the name of a numeric variable data field that contains
the system-assigned queue record id or the queue record id itself, expressed as a
numeric constant.

18-10 CA-ADS Reference

18.4 GET QUEUE

Queue-record-id cannot be a doubleword binary field. The runtime system
converts the queue record id to a binary fullword for internal storage.

RETURN LENGTH into queue-data-actual-length-variable
Returns the untruncated length of the obtained queue record to the location
specified by queue-data-actual-length-variable.

Queue-data-actual-length-variable is the name of a numeric field in the dialog's
record buffers.

error-expression
Specifies the status codes that are returned to the dialog.

�� For more information about error expressions, see Chapter 10, “Error
Handling.”

 Usage:

 Considerations

■ If the queue record is larger than the allocated buffer area, the record is truncated
as necessary. Deletion of the record from the queue after the transfer is complete
can be specified.

■ If autostatus is not in use, a dialog's error-status field indicates the outcome of a
GET QUEUE command:

�� The autostatus facility is described in Chapter 10, “Error Handling.”

Example: The following example illustrates the use of the GET QUEUE command.
The data in the last record in queue CUSTQ is transferred to the location in the
dialog's record buffers identified by CUSTWORK. The record is deleted from the
queue:

GET QUEUE ID 'CUSTQ' INTO CUSTWORK MAX LENGTH REC-LENGTH LAST.

Status Code Meaning

0000 The request was executed successfully

4404 The requested header record cannot be found

4405 The requested queue record cannot be found

4407 An I/O error occurred during processing

4419 The dialog's storage location is too small for the requested queue
record. The record was truncated accordingly

4431 The CA-ADS internal parameter list was invalid

4432 The derived length of the queue record data area is negative

Chapter 18. Queue and Scratch Management Commands 18-11

18.5 PUT QUEUE

 18.5 PUT QUEUE

Purpose: Stores a queue record in the data dictionary.

 Syntax:

��─── PUT QUEUE ─────┬───────────────┬──────────┬─ LAST ← ─┬──────────────────�

└─ ID queue-id ─┘ └─ FIRST ──┘

 �─── FROM queue-data-location-variable ──────────────────────────────────────�

 �──┬──┬────────────────────────────────�

├─ TO end-queue-data-location-variable ──┤

└─ LENGTH queue-data-length ─────────────┘

 �──┬──┬────────────────────────────�

└─ RETENTION is ──┬─ FOREVER ← ──────────────┤

└─ queue-retention-period ─┘

 �──┬───┬───────────────────�

└── RETURN RECORD ID into return-queue-id-variable ───┘

 �──┬────────────────────┬─────── . ──��

└─ error-expression ─┘

 Parameters

ID queue-id
Stores a record in the queue identified by queue-id.

Queue-id is either the name of a variable data field that contains a queue id or the
1- to 16-character queue id itself, enclosed in single quotation marks.

If queue-id is not specified, a null queue id (that is, 16 blanks) is assumed.

LAST
Stores a record at the end of the queue.

LAST is the default when you specify neither LAST or FIRST.

FIRST
Stores a record at the beginning of the queue.

FROM queue-data-location-variable
Specifies the location of the data to be stored in the queue record.

Queue-data-location-variable is the name of a variable data field in the dialog's
record buffers.

TO end-queue-data-location-variable
Specifies the end of the buffer area that contains the queue record data.

End-queue-data-location-variable is the name of a variable data field that contains
a data item not associated with the queue record data.

The field specified by end-queue-data-location-variable must immediately follow
the last byte of the buffer area that contains the queue record data.

18-12 CA-ADS Reference

18.5 PUT QUEUE

LENGTH queue-data-length
Specifies the length, to be specified in bytes, of the buffer area that contains the
data to be stored in the queue record.

Queue-data-length is either the name of a variable data field that contains the
length or the length itself, expressed as a numeric constant.

If neither TO end-queue-data-location-variable nor LENGTH queue-data-length is
specified, the length of the location is the length of queue-data-location-variable.

RETENTION
Introduces the number of days, in the range 0 through 255, that the queue is to be
retained.

A retention period of 255 is equivalent to FOREVER.

FOREVER
Retains the queue until all queue records associated with the queue are explicitly
deleted.

FOREVER is the default when the queue's retention period is not otherwise
specified.

queue-retention-period
The name of a variable data field that contains the retention period or the retention
period itself, expressed as a numeric constant.

RETURN RECORD ID into return-queue-id-variable
Returns a system-assigned queue record id to the location specified by
return-queue-id-variable.

The queue record id is returned as a binary fullword and is converted, as
appropriate, when it is moved to return-queue-id-variable

Return-queue-id-variable is the name of a numeric variable data field in the
dialog's record buffers.

Return-queue-id-variable cannot be a doubleword binary field. The
system-assigned queue record id can subsequently be used to retrieve or delete the
associated queue record.

error-expression
Specifies the status codes that are returned to the dialog.

�� For more information about error expressions, see Chapter 10, “Error
Handling.”

 Usage

Considerations: If autostatus is not in use, a dialog's error-status field indicates the
outcome of a PUT QUEUE command:

Chapter 18. Queue and Scratch Management Commands 18-13

18.5 PUT QUEUE

�� The autostatus facility is described in Chapter 10, “Error Handling.”

Example: The following example illustrates the use of the PUT QUEUE command
to store the data in CUSTWORK in a queue record associated with queue CUSTQ:

PUT QUEUE ID 'CUSTQ' FROM CUSTWORK LENGTH REC-LENGTH

RETURN RECORD ID INTO REC-ID.

Status Code Meaning

0000 The request was executed successfully

4407 The queue upper limit has been reached or an I/O error occurred
during processing

4431 The CA-ADS internal parameter list was invalid

18-14 CA-ADS Reference

18.6 Scratch records

 18.6 Scratch records

Scratch records allow a task to pass information to subsequent tasks, thereby providing
data continuity among tasks. The scratch records are used only for temporary storage
of data and are not saved across a system shutdown or a system crash.

Scratch area id: A scratch area is identified by an eight-character name. Requests
to access a scratch record can use the scratch area id to specify the area with which
the object record is associated. If a request to store a scratch record specifies an
unknown scratch area id, a scratch area is created with the specified id.

Scratch records are also assigned numeric identifiers either by the application
developer or by the system. Records in a scratch area are arranged sequentially in
ascending order, according to the value of the scratch record identification.
System-assigned identifiers are sequenced last in a scratch area.

All scratch management command clauses must be coded in the same order in which
they appear in the syntax.

 18.6.1 CA-ADS usage

Scratch records are common to all tasks running on the same logical terminal. The
records stored by one task are available to subsequent tasks running on the same
terminal.

A request to store a scratch record places a record of the requested length in the data
dictionary. A database key pointer to the scratch record is placed in a scratch area
associated with the requesting task. Scratch records remain in the data dictionary until
explicitly deleted, until a signoff from DC/UCF occurs, or until the system is shut
down or crashes.

Currencies are maintained for each scratch area associated with a task. Scratch area
currencies are passed from one task to the next. A request for a particular scratch
record can identify the record by the scratch area id, by the scratch record id, by the
position of the record within the scratch area, or by the relationship of the object
record to the record that is current of the scratch area.

 Considerations

■ Scratch records associated with one terminal are not available to tasks associated
with other terminals.

■ Any number of scratch records can be associated with a single scratch area, and
any number of scratch areas can be associated with a task.

■ When all records associated with a given scratch area have been deleted, the
scratch area is also deleted.

■ During the execution of a CA-ADS application, each pseudo-converse is a new
task.

Chapter 18. Queue and Scratch Management Commands 18-15

18.6 Scratch records

�� For more information on DC/UCF tasks in the CA-ADS environment, see
Chapter 4, “CA-ADS Runtime System.”

 18.6.2 CA-ADS/Batch considerations

Information can be written to temporary scratch files at dialog execution time and
passed between dialogs within the same job step in a given CA-ADS/Batch
application. A request to store a scratch record places a record of the requested length
in a temporary work file. Records can be accessed in any order from this file. The
scratch file need not be defined to the data dictionary.

Scratch records remain in the temporary file until they are explicitly deleted, until the
job step is completed, until a signoff occurs, or if the system is shut down or crashes.

Using scratch files: To use scratch files:

1. Include process-language SCRATCH statements in dialog process modules. At
dialog execution time, these statements store, retrieve, and delete scratch records.

Syntax for SCRATCH statements in CA-ADS/Batch dialogs is the same as for
CA-ADS dialogs. SCRATCH statement syntax is presented later in this section.

2. Define the external name for a scratch file in the DMCL module for scratch
(SCRDMCL).

3. Initialize a data set for the scratch file the first time the file is used by using
the FORMAT utility.

�� For information about FORMAT job control language statements for
initializing a scratch file, see Appendix D, “Application and Dialog Utilities.”

4. Include FORMAT job control language statements immediately before control
statements for the CA-ADS/Batch application.

5. Specify the ddname/filename for the scratch file in the CA-ADS/Batch job to
make the initialized scratch file available to the application.

�� For more information on the FORMAT utility and its input parameters, refer to
CA-IDMS Utilities.

 Considerations

■ The scratch file cannot be used to communicate between CA-ADS/Batch job steps.

■ The same scratch file can be used in several CA-ADS/Batch job steps without
reinitializing the file. A PUT SCRATCH command must be used before any GET
SCRATCH commands.

■ Central version must be used to run CA-ADS/Batch.

18-16 CA-ADS Reference

18.7 DELETE SCRATCH

 18.7 DELETE SCRATCH

Purpose: Deletes one or all records associated with a particular scratch area id.

 Syntax:

��─── DELETE SCRATCH ────┬────────────────────────────┬───────────────────────�

└─ AREA ID scratch-area-id ──┘

 �──┬─ CURRENT ← ────────────────────┬──�

├─ FIRST ────────────────────────┤

├─ LAST ─────────────────────────┤

├─ NEXT ─────────────────────────┤

├─ PRIOR ────────────────────────┤

├─ ALL ──────────────────────────┤

└─ RECORD ID scratch-record-id ──┘

 �──┬──┬────────────�

└─ RETURN RECORD ID into return-scratch-record-id-variable ──┘

 �──┬────────────────────┬──────── . ───��

└─ error-expression ─┘

 Parameters

AREA ID scratch-area-id
Specifies the area in the data dictionary scratch area to be deleted.

Scratch-area-id is either the name of a variable data field that contains a scratch
area id or the 1- to 8-character scratch area id itself, enclosed in single quotation
marks.

If scratch-area-id is not specified, a null scratch area id (that is, eight blanks) is
assumed.

CURRENT
Deletes the record that is current of the scratch area specified by scratch-area-id.

CURRENT is the default when you specify no other scratch record to be deleted.

FIRST
Deletes the first record in the scratch area specified by scratch-area-id.

LAST
Deletes the last record in the scratch area specified by scratch-area-id.

NEXT
Deletes the record that follows the current record of the scratch area specified by
scratch-area-id.

If currency is not established, NEXT is equivalent to FIRST.

PRIOR
Deletes the record that precedes the current record of the scratch area specified by
scratch-area-id.

If currency is not established, PRIOR is equivalent to LAST.

Chapter 18. Queue and Scratch Management Commands 18-17

18.7 DELETE SCRATCH

ALL
Deletes all records in the scratch area specified by scratch-area-id.

RECORD ID scratch-record-id
Deletes the record identified by scratch-record-id.

Scratch-record-id is either the name of a variable data field that contains the
scratch record id or the scratch record id itself, expressed as a numeric constant.

RETURN RECORD ID into return-scratch-record-id-variable
Returns the id of the last scratch record deleted to the location specified by
return-scratch-record-id-variable.

Return-scratch-record-id-variable is the name of a numeric variable data field in
the dialog's record buffers.

Return-scratch-record-id-variable cannot be a doubleword binary field.

error-expression
Specifies the status codes that are returned to the dialog.

�� Error expressions are described in Chapter 10, “Error Handling.”

 Usage:

Considerations If autostatus is not in use, a dialog's error-status field indicates the
outcome of a DELETE SCRATCH command:

�� The autostatus facility is described in Chapter 10, “Error Handling.”

Example: The following example illustrates the use of the DELETE SCRATCH
command to delete all of the records in scratch area CUSTAREA:

DELETE SCRATCH AREA ID 'CUSTAREA' ALL.

Status Code Meaning

0000 The request was executed successfully.

4303 The requested scratch area cannot be found.

4305 The requested scratch record cannot be found.

4307 An I/O error occurred during processing.

4331 The CA-ADS internal parameter list is invalid.

18-18 CA-ADS Reference

18.8 GET SCRATCH

 18.8 GET SCRATCH

Purpose: Transfers the contents of a scratch record to a specified location in a
dialog's record buffers.

 Syntax:

��─── GET SCRATCH ────┬────────────────────────────┬──────────────────────────�

└─ AREA ID scratch-area-id ──┘

 �──┬─ DELETE ← ─┬──── INTO return-scratch-data-location-variable ────────────�

└─ KEEP ─────┘

 �──┬──┬──────────────────────────────�

├─ TO end-scratch-data-location-variable ──┤

└─ MAX LENGTH scratch-data-max-length ─────┘

 �──┬─ CURRENT ──────────────────────┬──�

├─ FIRST ────────────────────────┤

├─ LAST ─────────────────────────┤

├─ NEXT ← ───────────────────────┤

├─ PRIOR ────────────────────────┤

└─ RECORD ID scratch-record-id ──┘

 �──┬───┬───────────�

└── RETURN LENGTH into scratch-data-actual-length-variable ───┘

 �──┬────────────────────┬────── . ───��

└─ error-expression ─┘

 Parameters

AREA ID scratch-area-id
Specifies an area in the scratch area to be retrieved.

Scratch-area-id is either the name of a variable data field that contains a scratch
area id or the 1- to 8-character scratch area id itself, enclosed in single quotation
marks.

If scratch-area-id is not specified, a null scratch area id (that is, eight blanks) is
assumed.

DELETE
Deletes the record from the scratch area after it is passed to the requesting task.

If the record is truncated, the truncated data may be lost permanently.

DELETE is the default when you specify neither DELETE or KEEP.

KEEP
Retains the record in the scratch area after it is passed to the requesting task.

INTO return-scratch-data-location-variable
Specifies the location to which the requested scratch record is transferred.

Return-scratch-data-location-variable is the name of a variable data field in the
dialog's record buffers.

Chapter 18. Queue and Scratch Management Commands 18-19

18.8 GET SCRATCH

TO end-scratch-data-location-variable
Specifies the end of the buffer area allocated for the requested scratch record.

End-scratch-data-location-variable is the name of a dummy byte field or the name
of a variable data field that contains a data item not associated with the requested
scratch record.

The field specified by end-scratch-data-location-variable must immediately follow
the last byte of the buffer area allocated for the requested scratch record.

MAX LENGTH scratch-data-max-length
Specifies the length of the buffer area allocated for the requested scratch record.

Scratch-data-max-length is the name of a variable data field that contains the
length or the length itself, expressed as a numeric constant.

If neither TO end-scratch-data-location-variable nor MAX LENGTH
scratch-data-max-length is specified, the length of the location is the length of
return-scratch-data-location-variable.

CURRENT
Obtains the record that is current of the scratch area specified by scratch-area-id.

FIRST
Obtains the first record in the scratch area specified by scratch-area-id.

LAST
Obtains the last record in the scratch area specified by scratch-area-id.

NEXT
Obtains the record that follows the current record of the scratch area specified by
scratch-area-id.

NEXT is the default when you specify no other scratch record to be obtained.

If currency is not established, NEXT is equivalent to FIRST.

PRIOR
Obtains the record that precedes the current record of the scratch area specified by
scratch-area-id.

If currency is not established, PRIOR is equivalent to LAST.

RECORD ID scratch-record-id
Obtains the record identified by scratch-record-id.

Scratch-record-id is either the name of a variable data field that contains the
scratch record id or the scratch record id itself, expressed as a numeric constant.

RETURN LENGTH into scratch-data-actual-length-variable
Returns the untruncated length of the obtained scratch record to the location
specified by scratch-data-actual-length-variable.

Scratch-data-actual-length-variable is the name of a numeric field in the dialog's
record buffers.

18-20 CA-ADS Reference

18.8 GET SCRATCH

error-expression
Specifies the status codes that are returned to the dialog.

�� Error expressions are described in Chapter 10, “Error Handling.”

 Usage:

Considerations: If the scratch record is larger than the allocated buffer area, the
record is truncated as necessary.

If autostatus is not in use, a dialog's error-status field indicates the outcome of a GET
SCRATCH command:

�� The autostatus facility is described in Chapter 10, “Error Handling.”

Example: The following example illustrates the use of the GET SCRATCH
command to copy the last record in scratch area CUSTAREA to a location in the
dialog's record buffers identified by CUSTWORK. The record is retained in the
scratch area for later access:

GET SCRATCH AREA ID 'CUSTAREA' KEEP LAST

INTO CUSTWORK MAX LENGTH REC-LENGTH.

Status Code Meaning

0000 The request was executed successfully

4303 The requested scratch area cannot be found

4305 The requested scratch record cannot be found

4307 An I/O error occurred during processing

4319 The dialog's storage location is too small for the requested scratch
record. The record was truncated accordingly

4331 The CA-ADS internal parameter list was invalid

4332 The derived length of the scratch record data area is negative.

Chapter 18. Queue and Scratch Management Commands 18-21

18.9 PUT SCRATCH

 18.9 PUT SCRATCH

Purpose: Stores or replaces a scratch record in the scratch area.

 Syntax:

��─── PUT SCRATCH ────┬────────────────────────────┬──────────────────────────�

└─ AREA ID scratch-area-id ──┘

 �─── FROM scratch-data-location-variable ────────────────────────────────────�

 �──┬──┬──────────────────────────────�

├─ TO end-scratch-data-location-variable ──┤

└─ LENGTH scratch-data-length ─────────────┘

 �──┬──┬──────────────────────────�

└─ RECORD ID scratch-record-id ──┬───────────┬─┘

└─ REPLACE ─┘

 �─┬──┬─────────────�

└─ RETURN RECORD ID into return-scratch-record-id-variable ──┘

 �──┬────────────────────┬─────── . ──��

└─ error-expression ─┘

 Parameters

AREA ID scratch-area-id
Specifies the area in the scratch area where the record will be stored.

Scratch-area-id is either the name of a variable data field that contains a scratch
area id or the 1- to 8-character scratch area id itself, enclosed in single quotation
marks.

If scratch-area-id is not specified, a null scratch area id (that is, eight blanks) is
assumed.

FROM scratch-data-location-variable
Specifies the location of the data to be stored in the queue record.

Scratch-data-location-variable is the name of a variable data field in the dialog's
record buffers.

TO end-scratch-data-location-variable
Specifies the end of the buffer area that contains the data to be stored in the
scratch record.

End-scratch-data-location-variable is either the name of a dummy byte field or
the name of a variable data field that contains a data item not associated with the
scratch record data.

The field specified by end-scratch-data-location-variable must immediately follow
the last byte of the buffer area that contains the scratch record data.

LENGTH scratch-data-length
Specifies the length, to be specified in bytes, of the buffer area that contains the
data to be stored in the scratch record.

18-22 CA-ADS Reference

18.9 PUT SCRATCH

Scratch-data-length is either the name of a variable data field that contains the
length or the length itself, expressed as a numeric constant.

If neither TO end-scratch-data-location-variable nor LENGTH scratch-data-length
is specified, the length of the location is the length of
scratch-data-location-variable.

RECORD ID scratch-record-id
Assigns an id to the scratch record being stored.

Scratch-record-id is either the name of a variable data field that contains the
scratch record id or the scratch record id itself, expressed as a numeric constant.

The scratch record id can subsequently be used to retrieve or delete the associated
scratch record.

The scratch record id is stored as a binary fullword.

REPLACE
Replaces the scratch record identified by scratch-record-id with the scratch record
being stored.

RETURN RECORD ID into return-scratch-record-id-variable
Returns a system-assigned scratch record id to the location specified by
return-scratch-record-id-variable.

Return-scratch-record-id-variable is the name of a variable data field in the
dialog's record buffers.

Return-scratch-record-id-variable cannot be defined as a doubleword binary field.

The scratch record id can subsequently be used to retrieve or delete the associated
scratch record.

The system assigns a scratch record id if one is not specified in the RECORD ID
parameter.

error-expression
Specifies the status codes that are returned to the dialog.

�� Error expressions are described in Chapter 10, “Error Handling.”

 Usage:

Considerations: If autostatus is not in use, a dialog's error-status field indicates the
outcome of a PUT SCRATCH command:

Chapter 18. Queue and Scratch Management Commands 18-23

18.9 PUT SCRATCH

�� The autostatus facility is described in Chapter 10, “Error Handling.”

Example: The following example illustrates the use of the PUT SCRATCH
command:

PUT SCRATCH AREA ID 'CUSTAREA' FROM CUSTWORK LENGTH REC-LENGTH

RETURN RECORD ID INTO REC-ID.

Status Code Meaning

0000 The request to add a scratch record was executed successfully

4307 An I/O error occurred during processing

4317 The request to replace a scratch record was executed successfully

4322 The request to store a scratch record cannot be executed because
the scratch record id already exists within the scratch area and the
REPLACE option was not specified

4331 The CA-ADS internal parameter list was invalid

4332 The derived length of the scratch record data location is negative

18-24 CA-ADS Reference

Chapter 19. Subroutine Control Commands

19.1 Overview . 19-3
19.2 CALL . 19-4
19.3 DEFINE . 19-5
19.4 GOBACK . 19-6

Chapter 19. Subroutine Control Commands 19-1

19-2 CA-ADS Reference

19.1 Overview

 19.1 Overview

CA-ADS subroutine control commands are used to define and call subroutines within a
process.

The subroutine control commands are listed in the following table. Each command is
discussed later in this section.

Subroutine control commands

Command Description

CALL Passes control to a predefined subroutine

DEFINE Establishes an entry point for a subroutine and defines subroutine
processing

GOBACK Terminates subroutine processing and returns control to the
command following the associated CALL command

Chapter 19. Subroutine Control Commands 19-3

19.2 CALL

 19.2 CALL

Purpose: Passes control to a predetermined subroutine.

 Syntax:

��─── CALL subroutine-name ──── . ──��

 Parameter

subroutine-name
Specifies the 1- to 8-character name of the subroutine to which control is passed.
The subroutine name is defined by the DEFINE command, described below.

Usage: When the CA-ADS runtime system encounters a CALL command,
processing control passes to the beginning of the named subroutine. Processing
continues through the subroutine until CA-ADS encounters a GOBACK command, or
a control command

�� For more information about GOBACK, see 19.4, “GOBACK” later in this chapter.

For more information about control commands, in Chapter 15, “Control Commands.”

If no GOBACK or control command occurs before the end of the subroutine, the
runtime system automatically returns control to the command that immediately follows
the associated CALL command.

 Considerations

■ A CALL statement can occur in the body of a process or within a subroutine
definition.

■ Subroutine calls can be nested up to ten levels.

■ The called subroutine must be defined by using the DEFINE command, described
later in this section, and must be coded later in the process than the CALL
command.

19-4 CA-ADS Reference

19.3 DEFINE

 19.3 DEFINE

Purpose: Establishes an entry point for a subroutine and to define the subroutine
processing. At runtime, a subroutine is executed when it is named in a CALL
statement.

 Syntax:

 ┌───────────────────────┐

��─── DEFINE subroutine subroutine-name ─── . ───↓─ command statement. ──┴────��

 Parameters

subroutine-name
Specifies the 1- to 8-character name of the subroutine being defined.

Subroutine-name must be unique within the process.

command-statement
Specifies the process commands that define the subroutine.

Command-statement can be any process command statement except DEFINE
SUBROUTINE.

 Usage

 Considerations

■ Each command statement must be terminated with a period (.).

■ Any number of subroutine definitions can be coded at the end of a process.

■ A subroutine definition is terminated by the occurrence of another subroutine
definition or by the end of the process code.

■ DEFINE is the only process command that can follow a subroutine definition.

■ Subroutine order and physical placement within the process code are important.
The physical placement of multiple subroutines depends on the code within each
subroutine. All called subroutines must be physically coded lower than the calling
subroutine:

Example:

CALL SUBROUTINE-A.

....

CALL SUBROUTINE-B.

....

DEFINE SUBROUTINE-A.

(within this code which is subroutine-d)

DEFINE SUBROUTINE-D.

(within this code which is subroutine-b)

DEFINE SUBROUTINE-B.

Chapter 19. Subroutine Control Commands 19-5

19.4 GOBACK

 19.4 GOBACK

Purpose: Terminates subroutine processing.

 Syntax:

��─── GOBACK ──── . ───��

Usage: At run time, GOBACK returns processing control to the command following
the CALL that passed control to the subroutine.

 Considerations

■ A GOBACK command can be coded wherever logically appropriate within the
body of a subroutine.

■ A GOBACK command is automatically generated by CA-ADS to ensure that
GOBACK is the last command in the subroutine.

Example: The following example uses the CALL, DEFINE, and GOBACK
commands to illustrate the use of a subroutine within a process:

FIND CALC CUSTOMER.

IF DB-REC-NOT-FOUND

THEN

 DO.

 STORE CUSTOMER.

 CALL UPDMAIL.

DISPLAY MSG TEXT 'CUSTOMER ADDED'.

 END.

ELSE

 DO.

 MODIFY CUSTOMER.

 CALL UPDMAIL.

DISPLAY MESSAGE TEXT 'CUSTOMER CHANGED'.

 END.

DEFINE SUBROUTINE UPDMAIL.

 MOVE 1 TO SB.

 WHILE SB LE 3

 REPEAT.

MOVE CUST-INT(SB) TO MAIL-INT.

FIND CALC MAILIST.

CONNECT CUSTOMER TO MAILIST.

ADD 1 TO SB.

 END.

GOBACK.

19-6 CA-ADS Reference

 Chapter 20. Utility Commands

20.1 Overview . 20-3
20.2 ABORT . 20-4
20.3 ACCEPT . 20-8
20.4 INITIALIZE RECORDS . 20-10
20.5 SNAP . 20-11
20.6 TRACE . 20-13
20.7 WRITE PRINTER . 20-14
20.8 WRITE TO LOG/OPERATOR . 20-18

Chapter 20. Utility Commands 20-1

20-2 CA-ADS Reference

20.1 Overview

 20.1 Overview

CA-ADS utility commands are used to reinitialize record buffers, transmit data to be
printed, and provide information about the current task.

The utility commands are summarized in the following table.

Summary of utility commands

Command Description

ABORT Abnormally terminates an application

ACCEPT Retrieves task-related information

INITIALIZE RECORDS Reinitializes dialog record buffers

SNAP Requests a snap dump of selected memory areas

WRITE PRINTER Transmits data from a dialog to a CA-IDMS/DC or
CA-IDMS/UCF print queue

WRITE TO
LOG/OPERATOR

Sends a message to the log file or to the operator's
console (CA-ADS/Batch only)

Chapter 20. Utility Commands 20-3

20.2 ABORT

 20.2 ABORT

Purpose: Terminates the execution of the current task.

 Syntax:

��─── ABORT ─────┬────────┬─────┬─────────────────────────────────┬───────────��

└─ SNAP ─┘ └─┬─ MESSage ─┬─ message-options ─┘
└─ MSG ─────┘

20-4 CA-ADS Reference

20.2 ABORT

Expansion of message-options

��────┬─ TEXT ─────┬──────┬────────── message-text ───────────────────────────�

│ ├─ IS ─┤

 │ └─ = ─┘

└─ CODE ─────┬──────┬────────── message-code ───────────────────────────

├─ IS ─┤

 └─ = ─┘

 �──�

 ────┬───┬───────────────────────

 │ ┌──────────────┐ │

└─ PARMS ────┬─────┬─── (─↓── parameter ─┴─) ──┘

└─ = ─┘

 �──┬───────────────────────��

 ────┬──┬──────┘

└─ PREFIX ───┬──────┬─────── prefix ─────┘

├─ IS ─┤

 └─ = ─┘

 Parameters

SNAP
Writes a formatted snap dump to the CA-IDMS/DC or CA-IDMS/UCF (DC/UCF)
log. Snap dumps can be printed by means of the PRINT LOG utility.

�� For information on PRINT LOG, refer to CA-IDMS Utilities.

MESSage
Specifies a message to be displayed on the Dialog Abort Information screen and
written to the system log. If a MESSAGE clause is not specified, system message
DC174020 is used (text of this message can be changed by using IDD):

ADS/ON-LINE ABORT. USER SPECIFIED ABORT WITH NO MESSAGE CODE/TEXT

MSG can be used in place of MESSAGE.

�� For more information about altering message text using IDD, refer to the IDD
DDDL Reference, under the MESSAGE command.

TEXT IS message-text
Specifies the text of a message to be displayed in an online map's message field or
sent to a batch application and a system log file.

This can be either the name of a variable data field containing the message text or
the text string itself, enclosed in single quotation marks.

The text string can contain up to 240 displayable characters.

 CODE IS message-code
Specifies the message dictionary code of a message to be displayed in an online
map's message field or sent to the log file in a batch application.

This can be either the name of a variable data field that contains the message code
or the 6-digit code itself, expressed as a numeric literal.

Chapter 20. Utility Commands 20-5

20.2 ABORT

In a batch application, the message is also sent to the operator, if directed by the
destination specified in the dictionary.

PARMS = parameter
Introduces a replacement parameter for each variable field in the stored message
identified by message-code. The parameter can be either the name of an EBCDIC
or unsigned zoned decimal variable data field that contains the parameter value or
the actual parameter value, enclosed in single quotation marks.

Up to nine replacement parameters can be specified for a message. Multiple
parameters must be specified in the order in which they are numbered and
separated by blanks or commas.

The parameter value must contain displayable characters. At run time, each
variable data field in a stored message expands or contracts to accommodate the
size of its replacement parameter. A replacement parameter can be a maximum of
240 bytes.

PREFIX IS prefix
Overrides the default prefix of a dialog and a map. Prefix specifies an EBCDIC
or unsigned zoned decimal variable data field that contains a 2-character prefix or
the 2-character prefix itself, enclosed in single quotation marks

 Usage

 Considerations

■ When a dialog issues an ABORT command, CA-ADS abnormally terminates the
current task and returns control to DC/UCF. A snap dump of all memory areas
maintained for the current CA-ADS runtime session at the time of the abort can
be requested.

■ The CA-ADS runtime system provides a diagnostic screen that displays
information about an abnormally terminated dialog. The diagnostic screen is
enabled for an installation by means of the DIAGNOSTIC SCREEN clause of the
system generation ADSO statement.

�� For more information on the ADSO statement, refer to CA-IDMS System
Generation.

If the diagnostic screen is not enabled when an ABORT command is issued, a
system error message (DC466019) is displayed. If a message code is specified in
the ABORT command and the dictionary message specifies a destination of log,
the message is also sent to the system log.

�� For more information on the Dialog Abort Information screen, see Chapter 4,
“CA-ADS Runtime System.”

■ Up to nine replacement parameters can be specified for a message.

■ Multiple message parameters must be separated by blanks or commas.

20-6 CA-ADS Reference

20.2 ABORT

■ Message parameters must be specified in the order in which they occur in the
stored message.

■ Within the message definition in the dictionary, symbolic parameters are identified
by an ampersand (&) followed by a two-digit numeric identifier. These identifiers
can appear in any order. The position of the replacement values in the PARMS
parameter must correspond directly to the two-digit numeric identifiers in the
message; the first value corresponds to &01, the second to &02, and so forth. For
example, assume that the stored message text is as follows:

THIS IS TEXT &H1 AND &H3 OR &H2

The PARMS parameter reads PARMS=('A','B','C'). The resulting text would read
as follows:

THIS IS TEXT A AND C OR B

Example: The following example illustrates the use of the ABORT command:

ADD ACC-BAL TO TOT-BAL.

ADD 1 TO CONTROL-CTR.

IF CONTROL-CTR < 1HH

THEN

 INVOKE 'CEXDRHH8'.

ELSE

ABORT SNAP MSG TEXT CUST-NUM.

Chapter 20. Utility Commands 20-7

20.3 ACCEPT

 20.3 ACCEPT

Purpose: Retrieves information about the current task and dialog. (In ADS/Batch,
ACCEPT is used to accept runtime parameters into a storage location.)

 Syntax:

��─ ACCept ──┬──┬─ TASK CODE ───────────┬─ INTO location ──┬── . ─────────────��

│ ├─ TASK ID ─────────────┤ │

│ ├─ LTERM ID ────────────┤ │

│ ├─ PTERM ID ────────────┤ │

│ ├─ SYSVERSION ──────────┤ │

│ ├─ USER ID ─────────────┤ │

│ ├─ current DIALOG name ─┤ │

│ ├─ HIGHER DIALOG name ─┤ │

│ ├─ RECORD name ─────────┤ │

│ ├─ AREA name ───────────┤ │

│ ├─ ERROR SET name ──────┤ │

│ ├─ ERROR RECORD name ───┤ │

│ ├─ ERROR AREA name ─────┤ │

│ └─┬─ RUN PARameters ─┬──┘ │

│ └─ PARMS ──────────┘ │

 │ │

└─ SCREEN SIZE INTO location1 location2 ─────┘

 Parameters

TASK CODE
Retrieves the eight-character code used to invoke the current task.

TASK ID
Retrieves the DC/UCF-assigned task identification number. The task id is a
unique sequence number stored in a binary fullword field. The task id is zero
when DC/UCF is started and is incremented by one for each new task added to
the system.

LTERM ID
Retrieves the eight-character identification of the logical terminal associated with
the current task.

PTERM ID
Retrieves the eight-character identification of the physical terminal associated with
the current task.

SYSVERSION
Retrieves the version number, in the range 0 to 32767, of the DC/UCF system
currently in use. The version number is stored in a binary halfword field.

USER ID
Retrieves the user identification.

In CA-ADS, the 32-character identification of the user signed on to the logical
terminal associated with the current task is retrieved. If no user is signed on, a
null user id (that is, 32 blanks) is returned.

In CA-ADS/Batch, the user identification specified in the USER (REQUESTOR)
input parameter is retrieved.

20-8 CA-ADS Reference

20.3 ACCEPT

current DIALOG name
Retrieves the name of the current dialog.

HIGHER DIALOG name
Retrieves the name of the dialog that is operative at the next higher level in the
current application thread.

RECORD name
Retrieves the name of the record that is current of run unit for the issuing dialog.

AREA name
Retrieves the name of the area that is current of area for the issuing dialog.

ERROR SET name
Retrieves the name of the last set involved in an operation that resulted in an error
condition.

ERROR RECORD name
Retrieves the name of the last record involved in an operation that resulted in an
error condition.

ERROR AREA name
Retrieves the name of the last area involved in an operation that resulted in an
error condition.

RUN PARameters
(CA-ADS/Batch only) Retrieves runtime parameters, which are specified in the
JCL PARM parameter (OS/390, VSE/ESA Release 2.1, and VM/ESA) or in a JOB
VARIABLE statement (BS2000/OSD). If no runtime parameters are specified in
the JCL, the storage location is blank filled.

PARMS can be used in place of RUN PAR.

INTO location
Specifies the location to which the information is moved.

Location is the name of a variable data field in the dialog's record buffers. The
specified field must have an appropriate picture and usage for the value being
retrieved.

SCREEN SIZE INTO location1 location2
Retrieves the dimensions (that is, the number of rows and columns) of the
physical terminal screen associated with the current task.

Location1 is the name of a numeric variable data field in the dialog's record
buffers to which the number of rows moved.

Location2 is the name of a numeric variable data field in the dialog's record
buffers to which the number of columns is moved.

Chapter 20. Utility Commands 20-9

20.4 INITIALIZE RECORDS

 20.4 INITIALIZE RECORDS

Purpose: Reinitializes one or more of a dialog's record buffers.

 Syntax:

��─── INITialize records ────┬─ ALL ────────────────────┬─── . ───────────────��

 │ ┌───────────────┐ │

└─ (─↓─ record-name ─┴─) ─┘

 Parameters

ALL
Reinitializes the buffers for all subschema, map, and work records referenced by
the issuing dialog, regardless of which dialog originally allocated the buffers.

record-name
Reinitializes the buffer for each record specified by record-name. The named
records must be associated with the issuing dialog.

 Usage:

 Considerations

■ After execution of an INITIALIZE RECORDS command, the record elements in
the specified record buffers contain their original values, as follows:

– If the record element is defined with a VALUE IS clause, the buffer is
reinitialized with the defined value.

– If the record element definition has no VALUE IS clause, the buffer is
reinitialized either with spaces (EBCDIC and DBCS fields) or with zeros of
the appropriate data type (numeric fields).

20-10 CA-ADS Reference

20.5 SNAP

 20.5 SNAP

Purpose: Request a snap dump of the contents of one or more areas maintained in
memory for CA-ADS. The dump produced by a SNAP command can be used to
assess the use of system resources by an executing dialog.

 Syntax:

 ┌──┐

��──── SNAP ───↓────┬─┬── ALL ──────────┬─────────────────┬───┴───────────────�

│ │ │ │

│ │ ┌────────────┐ │ │

│ └─↓─┬─ OCB ─┬─┴──┘ │

│ ├─ OWA -─┤ │

 │ ├─ OTB ─┤ │

│ ├─ OTBX ─┤ │

 │ ├─ FDB ─┤ │

 │ ├─ VDB ─┤ │

 │ ├─ RBB ─┤ │

 │ ├─ ADB ─┤ │

 │ └─ TAT ─┘ │

 │ ┌───────────────┐ │

└─ RECORDs - (─↓─ record-name ─┴─) ─┘

 �──┬──┬─── . ────────────────────────��

└─ TITLE ───┬──────┬──── 'title-text' ─────┘

├─ IS ─┤

 └─ = ─┘

 Parameters

ALL
Writes all areas of memory maintained for the issuing dialog to the SNAP dump.

OCB
Keyword which requests the CA-ADS control block. The OCB contains CA-ADS
system parameters specified in the system generation ADSO statement.

OWA
Keyword which specifies the CA-ADS online work area. The OWA is maintained
as a temporary storage buffer for application and dialog information used during
CA-ADS runtime processing. The OWA is not maintained across tasks.

OTB
Keyword which specifies the CA-ADS terminal block. The OTB contains
information about the current CA-ADS session. The OTB is maintained across
tasks.

OTBX
Keyword which specifies the CA-ADS terminal block extension. The OTBX is an
extension of the OTB and contains pointers to the TAT, the
ADSO-APPLICATION-GLOBAL-RECORD record buffer, the RBB, and the
ADB for the currently executing application. The OTBX exists only for
applications defined using the application compiler (ADSA).

Chapter 20. Utility Commands 20-11

20.5 SNAP

FDB
Keyword which specifies the fixed dialog block. The FDB is the dialog load
module created by the dialog compiler (ADSC). Information in the FDB includes
executable process code and parameters required to execute the dialog, and
information on the maps and records associated with the dialog.

VDB
Keyword which specifies the variable dialog block. One VDB exists for each
operative dialog. A VDB contains runtime variable information about a dialog,
such as the status of map fields, information concerning flow of control, addresses
of records used by the dialog, and the address of the executing command.

The VDB is created dynamically for the issuing dialog at runtime.

RBB
Keyword which specifies the record buffer block. The RBB contains header
information and buffers for all records associated with the current application.

ADB
Keyword which specifies the application definition block. The ADB is the
application load module created by the CA/ADS online application compiler. The
ADB contains the application information supplied on the definition screens
during an application compiler session. The ADB exists only if the application is
defined using the application compiler.

TAT
Keyword which specifies the task application table. The TAT contains the names
of task codes used to initiate applications and the names of the applications
(ADBs) thus initiated. The TAT exists only if there are applications on the
system that are defined using the application compiler.

RECORDS record-name
Includes information associated with the specified subschema, map, or work
records in the SNAP dump. The information is taken from the RBB; it includes
data, but no headers, from the buffers for the named records.

Record-name must be associated with the issuing dialog.

TITLE is 'title-text'
Specifies a title for the SNAP dump.

Title-text is a 1- to 90-character string enclosed in single quotation marks. The
specified title is printed on the hard-copy listing of the SNAP dump.

Usage: Snap dumps are written to the DC/UCF log and can be printed by using the
PRINT LOG print log utility.

�� For information on PRINT LOG, refer to CA-IDMS Utilities.

20-12 CA-ADS Reference

20.6 TRACE

 20.6 TRACE

Purpose: Activates the CA-ADS trace facility; with the OFF parameter, deactivates
the CA-ADS trace facility.

 Syntax

��─── TRACE ─┬─────────┬──��

├─ ALL ← ─┤

├─ CTL ───┤

└─ OFF ───┘

 Parameters

ALL
Writes trace records to the system log for each of the following:

 ■ Dialog entry

■ Process module entry

 ■ Subroutine entry

■ Process command execution for dialogs having symbol tables

■ Database status information

■ Currency save and restore operations

CTL
Writes the same trace records as ALL only for the following subset of process
commands:

 ■ Control commands

 ■ Database commands

OFF
Deactivates the trace facility.

Chapter 20. Utility Commands 20-13

20.7 WRITE PRINTER

 20.7 WRITE PRINTER

Purpose: Sends data from a dialog to a printer or to a file.

 Syntax:

��─── WRITE PRINTER ────┬─────────────┬───┬──────────┬────────────────────────�

└┬─ ERASE ───┬┘ └─ ENDRPT ─┘

└─ NEWPAGE ─┘

 �────┬─ SCREEN CONTENTS ───�

└┬──────────┬─ FROM message-location-variable ──────────────────────────

└─ NATIVE ─┘

 �───┬──────────────────────────────�

────┬─ TO end-message-location-variable ──┬──┘

└─ LENGTH message-length ─────────────┘

 �────┬──────────────────────┬──�

└─ COPIES copy-count ──┘

 �────┬────────────────────────┬──�

└─ REPORT ID report-id ──┘

 �────┬─────────────────────────┬──────────────────────┬──────────────────────�

 ├─ CLASS printer-class ──┘ │

 │ │

└─ DESTINATION printer-destination ──┬───────┬───┘

└─ ALL ─┘

 �────┬────────┬───┬────────┬───┬────────────────────┬─── . ──────────────────��

└─ HOLD ─┘ └─ KEEP ─┘ └─ error-expression ─┘

 Parameters

ERASE
Specifies that the data being transmitted is to be printed on a new page.

NEWPAGE may be used in place of ERASE.

ENDRPT
Specifies that the data being transmitted is the last record of the specified report.
If ENDRPT is specified, the report is printed before the current task terminates.

SCREEN CONTENTS
Transmits the contents of the currently displayed screen to the print queue. This
option is valid only for 3270-type terminals. If SCREEN CONTENTS is specified
for another terminal type, an error condition results.

NATIVE
Specifies that the data stream being transmitted contains line and device control
characters. If NATIVE is not specified, DC/UCF automatically inserts the
necessary characters.

FROM message-location-variable
Specified the location of the data to be transmitted to the print queue.

Message-location-variable is the name of a variable data field in the dialog's
record buffers.

20-14 CA-ADS Reference

20.7 WRITE PRINTER

TO end-message-location-variable
Specifies the end of the buffer area that contains the data to be transmitted.

End-message-location-variable is the name of a dummy byte field or the name of
a variable data field that contains a data item not associated with the data being
transmitted.

The field specified by end-message-location-variable must immediately follow the
last byte of the buffer area that contains the data to be transmitted.

LENGTH message-length
Specifies the length of the buffer area that contains the data to be transmitted.

Message-length is either the name of a numeric variable data field that contains
the length in bytes or the length itself, in bytes, expressed as a numeric constant.

COPIES copy-count
Specifies the number of report copies to print.

Copy-count-number is either the name of a numeric variable data field that
contains the copy count or the number of report copies itself, expressed as a
numeric constant in the range 1 through 255.

If COPIES is not specified, the number of copies defaults to 1.

REPORT ID report-id
Specifies the report with which the transmitted data is associated. The report id
must be an integer in the range 1 through 255.

Report-id is either the name of a numeric variable data field that contains the
report id or the report id itself expressed as a numeric constant.

If REPORT ID is not specified, the report id defaults to 1.

CLASS printer-class
Specifies the print class, in the range 1 through 64, to which the report is
assigned.

Printer-class is either The name of a numeric variable data field that contains the
print class or the print class itself, expressed as a numeric constant.

If no print class is specified, the physical terminal default is used.

DESTINATION printer-destination
Specifies the printer to which the report is routed.

Printer-destination is either the name of a variable data field that contains the 1 to
8-character destination or the destination itself, enclosed in single quotation marks.

If no print destination is specified, the physical terminal default is used.

ALL
Specifies that the report is to be printed on all of the logical terminals at the
specified print destination. If ALL is not specified, the report is printed on only
one of the logical terminals.

Chapter 20. Utility Commands 20-15

20.7 WRITE PRINTER

HOLD
Specifies that DC/UCF is not to print the report until a system operator releases it
with a DCMT VARY REPORT command.

�� For information about DCMT commands, see CA-IDMS System Tasks and
Operator Commands.

KEEP
Specifies that each time DC/UCF finishes printing the report, the report is to be
kept instead of deleted. The report can be reprinted or deleted with a DCMT
VARY REPORT command.

If KEEP is not specified, the report is deleted once it is printed.

error-expression
Specifies the status codes that are returned to the dialog.

�� Error expressions are described in Chapter 10, “Error Handling.”

 Usage

Definition: The WRITE PRINTER command is used to transmit data from the issuing
dialog to a DC/UCF printer terminal and to initiate printing of the transmitted data.
Data is passed first to a report queue maintained by DC/UCF and then to the printer.

Each line of data transmitted by a WRITE PRINTER request is considered a record.
Each record is associated with a particular report in the report queue. A report
consists of one or more records. The report queue can contain up to 256 active reports
for any one task.

If autostatus is not in use, a dialog's error-status field indicates the outcome of a
WRITE PRINTER command:

Status Code Meaning

0000 The request was executed successfully

4807 An I/O error occurred in placing the record in the print queue

4818 The DC/UCF system has no logical terminals associated with a
printer

4821 The specified printer destination is invalid

4838 The variable storage field that contains the record to be printed was
not allocated

4845 The output terminal type is not correct for the WRITE PRINTER
request

4846 A terminal I/O error occurred while attempting to print the contents
of a screen.

20-16 CA-ADS Reference

20.7 WRITE PRINTER

�� The autostatus facility is described under Chapter 10, “Error Handling.”

 Considerations

■ A report is terminated when the current run unit is terminated or when a WRITE
PRINTER ENDRPT command is issued. Note that a run unit can be extended
across dialogs by using the LINK command.

�� For more information on extending a run unit, see Chapter 4, “CA-ADS
Runtime System” and Chapter 15, “Control Commands.”

■ A process can contain multiple WRITE PRINTER requests, each for a different
report. DC/UCF maintains the records associated with each report individually,
ensuring that records associated with one report are not interspersed with records
associated with other reports when the reports are printed.

■ Printing is initiated either explicitly by a WRITE PRINTER request or implicitly
by termination of the current task. If a task terminates abnormally, all data in the
print queue is deleted, unless it was previously committed by a COMMIT TASK
command.

■ Each printer has one or more DC/UCF classes or destinations. The print class and
destination for a report are assigned when the WRITE PRINTER command is
issued for the first record in the report. The entire report is printed on the first
available printer with the specified class.

■ A default print class and print destination can be specified for applications defined
using the application compiler. The defaults are specified on the General Options
screen.

�� For more information, see Chapter 2, “CA-ADS Application Compiler
(ADSA).”

At runtime, the defaults are stored in the AGR-PRINT-CLASS and
AGR-PRINT-DESTINATION record elements of the ADSO-
APPLICATION-GLOBAL-RECORD. WRITE PRINTER commands can select
these defaults by specifying these record elements in the CLASS and
DESTINATION parameters.

�� For more information on the ADSO-APPLICATION-GLOBAL-RECORD, see
Appendix A, “System Records.”

Chapter 20. Utility Commands 20-17

20.8 WRITE TO LOG/OPERATOR

20.8 WRITE TO LOG/OPERATOR

Purpose: Sends messages to the log file or, in the batch environment, to the log file
and the operator's console.

 Syntax:

��─── WRITE ─── to ──┬─ LOG ──────┬───┬── MESSAGE ──┬── message-options ── . ─��
└─ OPERator ─┘ └── MSG ─────┘

Expansion of message-options

��────┬─ TEXT ─────┬──────┬────────── message-text ───────────────────────────�

│ ├─ IS ─┤

 │ └─ = ─┘

└─ CODE ─────┬──────┬────────── message-code ───────────────────────────

├─ IS ─┤

 └─ = ─┘

 �──�

 ────┬───┬───────────────────────

 │ ┌──────────────┐ │

└─ PARMS ────┬─────┬─── (─↓── parameter ─┴─) ──┘

└─ = ─┘

 �──┬───────────────────────��

 ────┬──┬──────┘

└─ PREFIX ───┬──────┬─────── prefix ─────┘

├─ IS ─┤

 └─ = ─┘

 Parameters

LOG/OPERATOR
Sends a message to the system log or to the operator's console. OPERATOR can
be specified only in the batch environment.

MESSage message-options
Identifies message to be displayed.

MSG can be used in place of MESSAGE.

TEXT IS message-text
Specifies the text of a message to be displayed in an online map's message field or
sent to a batch application and a system log file.

Message-text specifies either the name of a variable data field containing the
message text or the text string itself, enclosed in single quotation marks.

The text string can contain up to 240 displayable characters.

 CODE IS message-code
Specifies the message dictionary code of a message to be displayed in an online
map's message field or sent to the log file in a batch application.

In a batch application, the message is also sent to the operator, if directed by the
destination specified in the dictionary.

20-18 CA-ADS Reference

20.8 WRITE TO LOG/OPERATOR

Message-code specifies either the name of a variable data field that contains the
message code or the 6-digit code itself, expressed as a numeric literal.

PARMS = parameter
Specifies a replacement parameter for each variable field in the stored message
identified by message-code.

Up to nine replacement parameters can be specified for a message. Multiple
parameters must be specified in the order in which they are numbered and
separated by blanks or commas.

Parameter specifies either the name of an EBCDIC or unsigned zoned decimal
variable data field that contains the parameter value or the actual parameter value,
enclosed in single quotation marks.

The parameter value must contain displayable characters. At run time, each
variable data field in a stored message expands or contracts to accommodate the
size of its replacement parameter. A replacement parameter can be a maximum of
240 bytes.

PREFIX IS prefix
Overrides the default prefix of a dialog and a map.

Prefix must either specify an EBCDIC or unsigned zoned decimal variable data
field that contains a 2-character prefix or the 2-character prefix itself, enclosed in
single quotation marks

 Usage

 Considerations

■ Up to nine replacement parameters can be specified for a message.

■ Multiple parameters must be separated by blanks or commas.

■ Multiple parameters must be specified in the order in which they occur in the
stored message.

Chapter 20. Utility Commands 20-19

20-20 CA-ADS Reference

Chapter 21. Cooperative Processing Commands

21.1 Using SEND/RECEIVE commands . 21-3
21.1.1 How cooperative processing works 21-3

21.2 Sample cooperative application . 21-4
21.2.1 Program A: Client listing (PC) . 21-5
21.2.2 Dialog B: Server listing (Mainframe) 21-7

21.3 SEND/RECEIVE commands . 21-9
21.4 ALLOCATE . 21-10
21.5 CONFIRM . 21-13
21.6 CONFIRMED . 21-14
21.7 CONTROL SESSION . 21-15
21.8 DEALLOCATE . 21-17
21.9 PREPARE-TO-RECEIVE . 21-19
21.10 RECEIVE-AND-WAIT . 21-20
21.11 REQUEST-TO-SEND . 21-21
21.12 SEND-DATA . 21-22
21.13 SEND-ERROR . 21-24
21.14 Design guidelines . 21-25
21.15 Understanding conversation states . 21-26

21.15.1 Conversation states in a successful data transfer 21-28
21.16 Testing APPC status codes and system fields 21-30

21.16.1 Status codes . 21-30
21.16.2 System fields . 21-30
21.16.3 When APPC status codes and system field values are returned . . 21-30
21.16.4 APPCCODE and APPCERC . 21-31
21.16.5 System fields . 21-34

Chapter 21. Cooperative Processing Commands 21-1

21-2 CA-ADS Reference

21.1 Using SEND/RECEIVE commands

21.1 Using SEND/RECEIVE commands

SEND/RECEIVE commands allow you to create applications that execute
cooperatively on two systems. You can exchange information between a CA-ADS
application (on the mainframe) and:

■ A CA-ADS application (running under a different CA-IDMS/DC system)

■ An Assembler program (running under CA-IDMS/DC)

■ Any program using APPC/LU6.2, regardless of the program's platform

Applications that execute cooperatively on two systems are taking advantage of
cooperative processing.

Client and server: With cooperative processing, labor is divided so that one side of
the application acts as a client and the other acts as a server. The client provides
front-end processing for the user (like data input, validation, and display). The server
provides back-end processing (like database access and the implementation of business
rules and procedures).

21.1.1 How cooperative processing works

The SEND/RECEIVE commands in CA-ADS follow the standards set for Advanced
Program to Program Communication (APPC).

APPC is an IBM standard that provides enhanced Systems Network Architecture
(SNA) support for distributed processing. APPC enables 2 processors to work
together: it describes the protocols the 2 processors' programs use to communicate as
they execute a single distributed transaction.

APPC is composed of logical and physical definitions of the system network. The
logical component is the LU 6.2 protocol, which defines the rules that govern the
exchange of information between the 2 programs.

The LU 6.2 protocol structures a program-to-program conversation like a polite
conversation: one side talks and the other side listens.

■ One program (the primary program) starts the conversation by calling the other
program (the secondary program).

■ The 2 programs agree on the rules governing the conversation before the
conversation can continue.

■ The conversation goes back and forth, with the current speaker (in send state)
always in control:

1. When the listener (in receive state) wants to speak, the listener requests
permission.

2. If the speaker approves the request, the listener switches to send state and the
speaker to receive state.

Chapter 21. Cooperative Processing Commands 21-3

21.2 Sample cooperative application

21.2 Sample cooperative application

This application retrieves employee information from the database. A user on the PC
uses Program A (the client) to send an employee ID to the mainframe. Dialog B (the
server) on the mainframe returns employee information to the PC.

The flowchart below describes the flow of information in the cooperative application.
The communication commands in Program A and Dialog B are labeled in sequence
(A1 through A8 and B1 through B6).

21-4 CA-ADS Reference

21.2 Sample cooperative application

21.2.1 Program A: Client listing (PC)

!___

 !

! This module sends up the employee ID and receives employee

! data back from mainframe server dialog A24HD1.

LOCAL Emp_data_group DICT.

SHOW TEXT '&nAccessing remote server ...'.

! Since we are going to use this data in some meaningful fashion we

! define a formatted conversation. Note the use of "FORMAT". This

! means that all data is automatically translated from PC data types

! to mainframe data types. IBM APPC LU 6.2 calls for the use of a return

! code to verify the state of a particular APPC verb. We use "Appccode".

(A1) ALLOCATE CONNECT 'SYSTEM55' TPN 'A24AD1' FORMAT.
AFTER Comm-error CALL SR_Abend.

! Note the use of a local subroutine called SR_Abend.

 !

! Let's send up the employee ID.

 !

(A2) SEND-DATA Emp_id.
AFTER Comm-error CALL SR_Abend.

 !

! "Turn the line around" and wait for server to send down

! the requested data. This flushes the communications

! buffer and passes control to the server dialog.

(A3) RECEIVE-AND-WAIT Emp_data_group.
 !

! If an employee was not found, then the server's SEND-ERROR

! shows PROG-ERROR at the client side of the conversation.

 !

 AFTER Prog-error
 DO.

! One more receive to get the deallocate state...

(A4) RECEIVE-AND-WAIT.
 AFTER Deallocate-normal

 DO.

(A5) DEALLOCATE LOCAL.
AFTER Comm-error CALL SR_Abend.

INITIALIZE (emp_first_name, emp_last_name,

office_code, emp_street, emp_city,

emp_state, emp_zip_first_five, status).

DISPLAY TEXT '&wEmployee not on file. Try again.'.

 END.

 END.

Chapter 21. Cooperative Processing Commands 21-5

21.2 Sample cooperative application

IF Appccode LT A OR What-received NE 'DATA-COMPLETE'
 CALL SR_Abend.

 !

! We seem to have received the data ok.

 !

! The server is still in control of the conversation, so we

! do one more receive-and-wait to receive the fact that the

! server has deallocated. This puts the client in deallocate state,

! allowing the client to deallocate normally and regain control.

 !

(A6) RECEIVE-AND-WAIT.
 AFTER Deallocate-normal

 DO.

(A7) DEALLOCATE LOCAL.
! Now move data to form fields and display it.

 Emp_first_name = Emp_data_group.emp_first_name.

 Emp_last_name = Emp_data_group.emp_last_name.

 Emp_street = Emp_data_group.emp_street.

 Emp_city = Emp_data_group.emp_city.

 Emp_state = Emp_data_group.emp_state.

Emp_zip_first_five = Emp_data_group.emp_zip_first_five.

 Status = Emp_data_group.status.

 Office_code = Emp_data_group.office_code.

DISPLAY FIELD Emp_id TEXT ' '.

 END.

AFTER Comm-error CALL SR_Abend.

!_______ Local subroutine _________

 DEFINE SR_Abend.

SHOW TEXT '&cComm Error. APPCCODE='&svb.&svb. Appccode

&svb.&svb. ', APPCERC=' &svb.&svb. Appcerc.

(A8) DEALLOCATE ABEND.

 DISPLAY.

 !

21-6 CA-ADS Reference

21.2 Sample cooperative application

21.2.2 Dialog B: Server listing (Mainframe)

!___

DIALOG A24AD1 (CA-ADS)

PROCESS NAME IS A24HD1-PREMAP

! THE INTENT OF THIS MAPLESS DIALOG IS TO RECEIVE THE EMPLOYEE-ID

! FROM THE PC APPLICATION AND THEN OBTAIN THE APPROPRIATE RECORDS FROM

! THE CA-IDMS/DB DATABASE, BASED ON THE CONTENTS OF THE EMPLOYEE ID.

! THEN CERTAIN ELEMENTS IN THE RECORDS ARE SENT BACK TO THE PC FOR FURTHER

 ! PROCESSING.

 !

! IN ALL APPC CONVERSATIONS THERE ARE LOCAL AND REMOTE PROGRAM.

! ONLY ONE OF THE PROGRAMS CAN CONTROL THE CONVERSATION BUT CONTROL

! CAN BE PASSED BACK AND FORTH BETWEEN LOCAL AND REMOTE APPLICATIONS.

 !

! IN THIS APPLICATION THE DEFAULT SENDER IS THE PC PROGRAM BECAUSE IT

! ISSUED THE ALLOCATE. ON THE RECEIVING END A "CONTROL SESSION" IS

! INITIATED IN RESPONSE TO THE ALLOCATE.

 !

! NOTE THAT THE USE OF THE FORMAT/NOFORMAT PARAMETERS MUST BE THE SAME AT

! BOTH ENDS OF THE CONVERSATION.

 READY.

(B2)CONTROL SESSION FORMAT.
IF APPCCODE LT H THEN

 CALL SR-ABEND.

! LET'S GET THE EMPLOYEE ID FROM THE PC.

(B2)RECEIVE-AND-WAIT EMP-ID-WORK.
IF APPCCODE LT H OR WHAT-RECEIVED NE 'DATA-COMPLETE' THEN

 CALL SR-ABEND.

! ALL APPC COMMUNICATIONS OCCUR IN HALF-DUPLEX MODE. THAT IS, ONLY ONE

! OF THE PROGRAMS CAN TALK WHILE THE OTHER LISTENS. IN ORDER TO

! "TURN THE LINE AROUND" THE RECEIVER MUST WAIT UNTIL THE SENDER SAYS IT'S

! OK TO SEND. THIS IS ACCOMPLISHED BY WAITING FOR 'SEND' TO BE RECEIVED

! IN THE WHAT-RECEIVED SYSTEM VARIABLE.

Chapter 21. Cooperative Processing Commands 21-7

21.2 Sample cooperative application

(B3)RECEIVE-AND-WAIT.
IF APPCCODE LT H OR WHAT-RECEIVED NE 'SEND' THEN

 CALL SR-ABEND.

! EMP-ID-H415 IS DEFINED AS PIC 9(4) USAGE IS DISPLAY. APPC PRESENTATION

! SERVICES DO NOT SUPPORT ZONED DECIMAL DATA TYPE. IN ORDER TO RECEIVE THE

! EMPLOYEE ID FROM THE PC, A WORK RECORD IS CREATED WITH USAGE IS COMP.

! THEN GET THE RECORD USING AN OBTAIN CALC.

MOVE WK-EMP-ID TO EMP-ID-H415.

OBTAIN CALC EMPLOYEE.

IF DB-REC-NOT-FOUND THEN DO.

(B4) SEND-ERROR. ! NOTIFY CLIENT WE DIDN'T FIND EMPLOYEE

IF APPCCODE LT H THEN CALL SR-ABEND.

(B5) DEALLOCATE.

 LEAVE ADS.

 END.

! GET THE OFFICE RECORD, IF ONE EXISTS.

IF SET OFFICE-EMPLOYEE MEMBER THEN

OBTAIN OWNER WITHIN OFFICE-EMPLOYEE.

 MOVE EMP-FIRST-NAME-H415 TO WK-EMP-FIRST-NAME.

 MOVE EMP-LAST-NAME-H415 TO WK-EMP-LAST-NAME.

 MOVE EMP-STREET-H415 TO WK-EMP-STREET.

MOVE EMP-CITY-H415 TO WK-EMP-CITY .

 MOVE EMP-STATE-H415 TO WK-EMP-STATE.

MOVE EMP-ZIP-FIRST-FIVE-H415 TO WK-EMP-ZIP-FIRST-FIVE.

 MOVE STATUS-H415 TO WK-STATUS.

 MOVE OFFICE-CODE-H45H TO WK-OFFICE-CODE.

(B6) SEND-DATA WK-EMP-REC2.
IF APPCCODE LT H THEN CALL SR-ABEND.

! NOW THAT WE HAVE FINISHED, LET'S FLUSH THE COMMUNICATIONS

! BUFFER AND TERMINATE THE CONVERSATION.

(B6)DEALLOCATE.
 LEAVE ADS.

!_______________________

 !

! SEND/RECEIVE ERROR HANDLING SUBROUTINE

 !

 DEFINE SR-ABEND.

(B7) DEALLOCATE ABEND.

 LEAVE ADS.

21-8 CA-ADS Reference

21.3 SEND/RECEIVE commands

 21.3 SEND/RECEIVE commands

SEND/RECEIVE commands are listed below. Syntax and syntax rules for each
command is presented in alphabetical order after the table.

Command What it does When it's issued

ALLOCATE Begins a conversation with a
server dialog

The first communication command issued by the
client dialog when it's ready to communicate

CONFIRM Sends a confirmation request
to the remote program and
waits for a reply

Issued by the dialog in send state

CONFIRMED Sends a confirmation reply to
the remote program

Issued by the dialog in confirm state

CONTROL SESSION Acknowledges the
conversation and agrees to the
rules governing the
conversation; a CA extension
to APPC used in
PC-to-mainframe
conversations, but not
required for
mainframe-to-mainframe
communication

Issued by the server dialog in response to the
client dialog's ALLOCATE; parameters must
match those on the ALLOCATE

DEALLOCATE Ends the conversation The last command in the conversation issued by
either dialog

PREPARE-TO-
RECEIVE

Changes the local side to
receive state

Issued by the dialog in send state in response to
REQUEST-TO-SEND

RECEIVE-AND-WAIT Waits for a response from the
remote program and receives
the data or a value in the
system field,
WHAT-RECEIVED, upon
arrival

Issued by a dialog that wants to receive data
(the dialog can be in send or receive state);
when used in send state, it indicates that the
local dialog wants to receive data, allowing the
remote dialog to send data

REQUEST-TO-SEND Notifies the remote program
that the local program is
ready to send data

Issued by the dialog in receive state

SEND-DATA Sends data to the remote
program

Issued by the dialog in send state

SEND-ERROR Notifies the other dialog of an
application-level error

Issued by either dialog

Chapter 21. Cooperative Processing Commands 21-9

21.4 ALLOCATE

 21.4 ALLOCATE

Purpose: Begins a conversation between a CA-ADS dialog and a remote dialog or
program. The FORMAT/NOFORMAT setting on the ALLOCATE command must
match the FORMAT/NOFORMAT setting on the CONTROL SESSION command.

 Syntax:

��─── ALLOCATE LU-NAME name ──┬──────────────────┬────────────────────────────�

└─ MODE-NAME name ─┘

 �─── TPN task-code-name ───�

 �──┬───┬─────────────────────�

└─ SECURITY ─┬─ NONE ← ───────────────────────────┬─┘

├─ SAME ─────────────────────────────┤

└─ PGM USER-ID id PASSWORD password ─┘

 �──┬───────────────────────────┬───────┬─ FORMAT ← ─┬────────────────────────�

└─ SYNC-LEVEL ─┬─ NONE ← ─┬┘ └─ NOFORMAT ─┘

└─ CONFIRM ─┘

 �──┬─────────────────────────┬─────────┬──────────────────────────┬─── . ────��

└─ LOCAL VERSION version ─┘ └─ REMOTE VERSION version ─┘

 Parameters

LU-NAME name
Specifies a field or string that identifies the 1- through 8-character name of the
logical unit used by the remote dialog.

Name must match the logical unit name of an APPC line defined to the local
CA-IDMS/DC system.

MODE-NAME name
Specifies the name used by the remote logical unit to select the mode of
transmission for the conversation.

Name Is either a 1- through 8-character mode name or a variable containing the
mode name.

If omitted, CA-IDMS/DC uses the mode name defined to the APPC line.

TPN task-code-name
A variable or string that contains or specifies the name of the remote program to
be initiated by the ALLOCATE command.

If trying to initiate a mainframe CA-ADS task, the task-code-name must be a 1-
through 8-character task code defined to the remote CA-IDMS/DC system that
invokes ADSORUN1.

SECURITY
Provides security information to the remote program.

NONE
Specifies that no security information is required for the conversation.

NONE is the default for SECURITY.

21-10 CA-ADS Reference

21.4 ALLOCATE

SAME
Specifies that the signon user ID is passed to the remote program. The following
considerations apply:

■ This signon does not work if a password is required to sign on to a separate
CA-IDMS/DC or CICS system

■ This password does not allow you to sign on to the same CA-IDMS/DC
system (CA-IDMS/DC will not support 2 LTEs signed on for the same user at
the same time)

PGM USER-ID id
Specifies the user ID of the user who runs the application.

Id is either a 1- through 32-character user ID or a field containing a user ID.

PASSWORD password
Introduces the password of the user who runs the application.

Password is either a 1- through 8-character password or a field containing a
password.

This information is used to sign on to the remote logical unit.

SYNC-LEVEL
Introduces the level of synchronization to use for the conversation.

NONE
Specifies that no confirmation commands can be used.

CONFIRM
Specifies that confirmation commands can be used.

FORMAT
Specifies that data will be converted by APPC presentation services before the
receiving program sees it:

■ Text is converted between ASCII and EBCDIC.

■ Numbers are converted between mainframe and PC format.

FORMAT is the default when neither FORMAT or NOFORMAT is specified.

NOFORMAT
Specifies that no data will be converted. If data conversion is required, you must
code any data translation or conversion.

LOCAL VERSION version
Specifies either a 1- through 32-character local program version identifier or a
field containing a version ID sent to the remote program.

REMOTE VERSION version
Specifies a variable of at least 32 characters to receive the version identifier sent
by the remote program.

Example: In order to allocate a conversation with another CA-ADS dialog on a
different CA-IDMS/DC system, code:

Chapter 21. Cooperative Processing Commands 21-11

21.4 ALLOCATE

ALLOCATE LU-NAME 'S75LU1' TPN 'DLG1' SECURITY NONE
SYSNC-LEVEL NONE NOFORMAT.

S75LU1 is the logical unit name of an APPC line defined to the local CA-IDMS/DC
system, and DLG1 is the task code that initiates an CA-ADS dialog on the remote
CA-IDMS/DC system. Security and confirmation are not being used, and conversion
is not needed between 2 mainframe applications.

21-12 CA-ADS Reference

21.5 CONFIRM

 21.5 CONFIRM

Purpose: Sends a confirmation request to a remote program and waits for a reply.

 Syntax:

��───── CONFIRM ── . ───��

Usage: CONFIRM sends all data in the communications buffers to the remote
program.

 Considerations

■ Before CONFIRM can be issued, the conversation must have a synchronization
level of CONFIRM: SYNC-LEVEL CONFIRM on the ALLOCATE command
and the issuing dialog must be in the send state.

■ When using CONFIRM to synchronize processing between 2 programs

– If the remote program received all data sent, it returns CONFIRMED.

– If the remote program can't process the data due to an application-level error,
it returns SEND-ERROR.

■ To check the status of a conversation, test the system fields
REQUEST-TO-SEND-RECEIVED and WHAT-RECEIVED.

Example: The local program can issue a confirmation or send an error message:

SEND-DATA EMPLOYEE-RECORD.

IF APPCCODE EQ ZERO

 THEN

 CONFIRM.
ELSE

 DO.

 DEALLOCATE ABEND.

ABORT MSG TEXT 'SEND-DATA ERROR'.

 END.

For the corresponding response from the remote program, see CONFIRMED.

Chapter 21. Cooperative Processing Commands 21-13

21.6 CONFIRMED

 21.6 CONFIRMED

Purpose: Sends a confirmation reply to the remote dialog.

 Syntax:

��───── CONFIRMED ── . ───��

Usage: CONFIRMED sends all data in the communications buffers to the remote
program.

Note: CONFIRMED is sent in response to CONFIRM only.

 Considerations

■ Before CONFIRMED can be issued, the conversation must have a synchronization
level of CONFIRM: SYNC-LEVEL CONFIRM on the ALLOCATE command.

■ When using CONFIRM to synchronize processing between 2 programs

– If the local dialog received all data sent, it returns CONFIRMED.

– If the local dialog can't process the data due to an application-level error, it
returns SEND-ERROR.

■ To check the status of a conversation

Test the system fields: APPCCODE and WHAT-RECEIVED.

Example: In response to the preceding CONFIRM example, the remote program
would issue:

RECEIVE-AND-WAIT EMPLOYEE-RECORD.

IF APPCCODE EQ ZERO

 THEN

 DO.

 RECEIVE-AND-WAIT.

IF APPCCODE EQ ZERO AND WHAT-RECEIVED EQ 'CONFIRM'

 THEN

 CONFIRMED.
 END.

21-14 CA-ADS Reference

21.7 CONTROL SESSION

 21.7 CONTROL SESSION

Purpose: Issued by the secondary dialog in response to the ALLOCATE command
sent by the primary dialog.

 Syntax:

��───── CONTROL SESSION ──────┬─ FORMAT ← ─┬──────────────────────────────────�

└─ NOFORMAT ─┘

 �───┬─────────────────────────┬─────────┬──────────────────────────┬──── . ──��

└─ LOCAL VERSION version ─┘ └─ REMOTE VERSION version ─┘

 Parameters

FORMAT
Specifies that data will be converted by APPC presentation services before the
receiving program sees it:

■ Text is converted between ASCII and EBCDIC.

■ Numbers are converted between mainframe and PC format.

FORMAT is the default for CONTROL SESSION.

NOFORMAT
Specifies that no data will be converted. If data conversion is required, you must
code any data translation or conversion.

Note: The FORMAT/NOFORMAT setting on the ALLOCATE command must
match the FORMAT/NOFORMAT setting on the CONTROL SESSION
command.

LOCAL VERSION version
Specifies either a 1- to 32-character local program version identifier or a field
containing a version ID sent to the remote program.

REMOTE VERSION version
Specifies a variable of at least 32 characters to receive the version identifier sent
by the remote program.

Usage: CONTROL SESSION is issued in response to the ALLOCATE command
sent by the primary program. These 2 commands establish the conventions governing
the conversation.

This command is required in PC-to-mainframe conversations but is not used for
mainframe-to-mainframe conversations.

Considerations: The FORMAT/NOFORMAT setting on the ALLOCATE command
must match the FORMAT/NOFORMAT setting on the CONTROL SESSION
command.

Chapter 21. Cooperative Processing Commands 21-15

21.7 CONTROL SESSION

Example: In response to an ALLOCATE with the FORMAT setting, the local
dialog sends LEVEL 1 in its local version to the remote dialog for testing. The
remote dialog will receive it in the field, REMOTE-FIELD, for testing.

CONTROL SESSION FORMAT LOCAL VERSION 'LEVEL 1'
REMOTE VERSION REMOTE-FIELD.

IF APPCCODE NE ZERO

 THEN

 DO.

 DEALLOCATE ABEND.

ABORT MSG TEXT 'CONTROL SESSION ERROR'.

 END.

IF REMOTE-FIELD NE 'FIRST RELEASE'

 THEN

 DO.

 DEALLOCATE ABEND.

ABORT MSG TEXT 'WRONG RELEASE OF PARTNER DIALOG'.

 END.

21-16 CA-ADS Reference

21.8 DEALLOCATE

 21.8 DEALLOCATE

Purpose: Ends the conversation.

 Syntax:

��─── DEALLOCATE ────┬─ FLUSH ────────┬────── . ──────────────────────────────��

├─ SYNC-LEVEL ← ─┤

├─ ABEND ────────┤

└─ LOCAL ────────┘

 Parameters

FLUSH
Sends all data in the communications buffer to the remote program and then
terminates the conversation normally.

SYNC-LEVEL
Terminates the conversation based on the synchronization level. If the current
synchronization level is:

■ NONE — All data in the communications buffer is sent to the remote dialog
and the conversation terminates normally.

■ CONFIRM — All data in the communications buffer is sent to the remote
dialog along with a request for confirmation. Once confirmation arrives from
the remote program, the conversation terminates normally. Otherwise, the
return code determines the state of the conversation.

SYNC-LEVEL is the default for DEALLOCATE

ABEND
Terminates the conversation abnormally.

The following considerations apply:

■ If the dialog is in send state, all data in the buffer is sent to the remote
program

■ If the dialog is in receive state, all data in the buffer is purged

LOCAL
Terminates the conversation after the remote dialog has deallocated the
conversation.

Usage: DEALLOCATE is the last command in the conversation, but each dialog
can continue independent processing. The command only ends the conversation.

 Considerations: DEALLOCATE:

■ Is not a control command

■ Does not end the dialog

Chapter 21. Cooperative Processing Commands 21-17

21.8 DEALLOCATE

 Example

IF APPCCODE NE ZERO

 THEN

 DO.

 DEALLOCATE ABEND.

ABORT MSG TEXT 'PROBLEM IN PROCESSING'.

 END.

21-18 CA-ADS Reference

21.9 PREPARE-TO-RECEIVE

 21.9 PREPARE-TO-RECEIVE

Purpose: Prepares to receive data from a remote program.

 Syntax:

��─── PREPARE-TO-RECEIVE ───┬─ SYNC-LEVEL ←─┬────── . ───────────────────────��

└─ FLUSH ────────┘

 Parameters

SYNC-LEVEL
Processes data based on the current synchronization level. If the synchronization
level is:

■ NONE — All data in the communications buffer is sent to the remote
program before the local dialog is put in receive state.

■ CONFIRM — All data in the communications buffer is sent to the remote
program along with a request for confirmation. If the remote dialog issues
CONFIRMED, the local dialog is put in receive state. Otherwise, the return
code from the remote program determines the state of the conversation.

SYNC-LEVEL is the default for PREPARE-TO-RECEIVE

FLUSH
Sends all data in the communications buffer to the remote program.

Usage: PREPARE-TO-RECEIVE is issued by the dialog in send state in response to
REQUEST-TO-SEND. PREPARE-TO-RECEIVE switches the local dialog to receive
state.

Considerations: To check the status of a conversation test the system fields:
REQUEST-TO-SEND and WHAT-RECEIVED.

Chapter 21. Cooperative Processing Commands 21-19

21.10 RECEIVE-AND-WAIT

 21.10 RECEIVE-AND-WAIT

Purpose: Names the record or field to receive data.

 Syntax:

��──── RECEIVE-AND-WAIT ────┬─────────────────┬─── . ─────────────────────────��

└─ variable-name ─┘

 Parameters

variable-name
Names the record or field to receive data from the remote program.

Variable-name can be up to 32 characters long.

If you omit the variable-name, data received from the remote program is lost.
Only a value is received in the WHAT-RECEIVED field.

 Usage:

Considerations: RECEIVE-AND-WAIT is issued by the dialog in receive state:

■ If presentation services are being used, then the variable's definition must match
the description of the incoming data definition.

■ If unformatted data is being received, the maximum length received is derived
from the variable's definition.

Example: This server dialog receives an employee id from the client and then
obtains the appropriate employee records from the database. The first
RECEIVE-AND-WAIT receives the id. The second turns the line around prior to
sending information to the client.

CONTROL SESSION FORMAT.

IF APPCCODE LT ZERO

THEN CALL SR-ABEND.

RECEIVE-AND-WAIT EMP-ID-WORK.
IF APPCCODE LT H OR WHAT-RECEIVED NE 'DATA-COMPLETE'

THEN CALL SR-ABEND.

RECEIVE-AND-WAIT.
 .

 .

 .

21-20 CA-ADS Reference

21.11 REQUEST-TO-SEND

 21.11 REQUEST-TO-SEND

Purpose: Notifies the remote dialog that the CA-ADS application is ready to send
data. The remote dialog can respond to this command in either of the following ways:

■ Ignoring the request and continuing to send data

■ Granting the request and starting to receive data

To determine whether permission to send has been granted, check the system field
(WHAT-RECEIVED).

 Syntax:

��──── REQUEST-TO-SEND ───── . ───��

Chapter 21. Cooperative Processing Commands 21-21

21.12 SEND-DATA

 21.12 SEND-DATA

Purpose: Sends data to the remote dialog.

 Syntax:

��──── SEND-DATA variable-name ─────── . ─────────────────────────────────────��

 Parameters

variable-name
Specifies the name of the record or element to be sent.

Variable-name can be up to 32 characters long.

Note: The definition of variable-name must be in the dictionary associated with
the local dialog.

Usage: Data to be sent is stored in the CA-ADS communications buffer. When the
buffer is full or you issue a CONFIRM command or DEALLOCATE with the FLUSH
option, the data in the buffer is sent to the remote dialog.

Considerations: CA-ADS issues a compiler error:

■ If the record or field transmitted is not a valid data type (these data types are not
valid for SEND/RECEIVE):

 – Pointer

 – Multibit binary

 – Zoned decimal

 – Graphics (kanji)

■ If the record or field transmitted is coded:

– With an OCCURS DEPENDING ON clause

– As USAGE COMP with decimal positions

■ If the record is a logical record

■ If variable-name is a level 88

■ If a group contains more than 256 fields

■ If a record definition makes an FD longer than 32,768 bytes

Any field that redefines another field is ignored, but a transmitted field can be a
REDEFINES field. For example, FIELD-B redefines FIELD-A within RECORD1. If
you send RECORD1, FIELD-B is ignored and the record is sent as if FIELD-A is the
current definition of the field.

Because only a subset of IDD data types are supported, you should:

1. Create a work record (much like the map work record) of the proper data types.

21-22 CA-ADS Reference

21.12 SEND-DATA

2. Move the values from your database record to this work record.

3. Move the received values back to your database record.

Example: After retrieving data and building the work record, send the data to the
client dialog.

SEND-DATA WK-EMP-REC2.
 IF APPCCODE LT H THEN CALL SR-ABEND.

Chapter 21. Cooperative Processing Commands 21-23

21.13 SEND-ERROR

 21.13 SEND-ERROR

Purpose: Informs the remote program that CA-ADS detected an application-level
error (such as DB-REC-NOT-FOUND).

 Syntax:

��──── SEND-ERROR ───── . ──��

Usage: When you issue SEND-ERROR, the remote program does not automatically
send the data again. The remote program must detect the SEND-ERROR and respond
appropriately.

Example: If the record is not found, notify the client.

IF DB-REC-NOT-FOUND THEN DO.

 SEND-ERROR.
IF APPCCODE LT H THEN CALL SR-ABEND.

 DEALLOCATE.

 LEAVE ADS.

 END.

21-24 CA-ADS Reference

21.14 Design guidelines

 21.14 Design guidelines

■ Be careful not to end a conversation inadvertently.

A conversation is a task-level resource in CA-IDMS/DC. When the task ends,
any ongoing conversation will be deallocated automatically. So do not use:

 – DISPLAY

– LEAVE ADS NEXT TASK CODE

– LINK (to a program that will pseudoconverse)

Using any of these commands will deallocate your conversation.

■ Be aware of the location of the allocated dialog.

The CA-ADS allocated task runs as a nonterminal task. Because you can not
point to a secondary load area or load library on the ALLOCATE command, the
allocated dialog should reside in the CA-IDMS/DC default load search sequence.

If you want to use a secondary load area or load library, you must override the
search sequence by:

– Using the SECURITY parameter on the ALLOCATE command issued by the
primary dialog.

– Dialogs which exist in secondary load areas can be accessed in the client task
thread by using a signon profile associated with that user containing DCUF
SET DICTNAME or LOADLIST to change the search sequence for the
secondary dialog.

For server task threads a new system loadlist must be created and the
secondary dictionary entry must be coded prior to the primary dictionary
entry. A typical loadlist follows:

ADD LOADLIST NEWLOAD

DICTNAME IS APPCDICT VERSION IS 1

DICTNAME IS USER-DEFAULT VERSION IS USER-DEFAULT

DICTNAME IS SYSTEM-DEFAULT VERSION IS SYSTEM-DEFAULT

LOADLIB IS USER-DEFAULT

DICTNAME IS USER-DEFAULT VERSION IS 1

DICTNAME IS SYSTEM-DEFAULT VERSION IS 1

LOADLIB IS SYSTEM-DEFAULT

MOD SYSTEM nnn

LOADLIST = NEWLOAD

Chapter 21. Cooperative Processing Commands 21-25

21.15 Understanding conversation states

21.15 Understanding conversation states

You must be aware of conversation states when you are developing a cooperative
application. Whenever a dialog is involved in a conversation, it is in a specific
conversation state. The state determines which communication operations can be
performed at that time. For example, a dialog must be in send state to send data; and
the partner dialog must be in receive state to receive data. You must keep both
dialogs synchronized to allow information to be exchanged.

Valid conversation states

Confirmation: The use of confirmation is optional. The primary program can
request confirmation at the beginning of the session. If confirmation is used, the
sending program can issue a CONFIRM command to which the recipient must respond
CONFIRMED or SEND-ERROR. You can acknowledge the receipt of data
programmatically if you prefer.

Statements and conversation states: The following table summarizes, for each
communication command, the states in which the command can be issued and the
resulting state after the command is executed.

State What it means

Reset No conversation exists

Send The dialog can send data, request confirmation, or deallocate the
conversation

Receive The dialog can receive information from its partner dialog.

Confirm The dialog can reply to a confirmation request (there are three
types of confirm state, based on the state of the dialog after a
communication command is issued)

Deallocate The dialog can deallocate the conversation

To issue this
command

The dialog must
be in this state

After this return
code

The dialog is in
this state

ALLOCATE Reset OK Send

Other Reset

CONFIRM Send OK Send

PROG-ERROR Receive

Other Deallocate

CONFIRMED ConfirmR OK Receive

Other Deallocate

21-26 CA-ADS Reference

21.15 Understanding conversation states

To issue this
command

The dialog must
be in this state

After this return
code

The dialog is in
this state

ConfirmS OK Send

Other Deallocate

ConfirmD Any Deallocate

CONTROL Receive OK Receive

SESSION Other Deallocate

DEALLOCATE

 FLUSH Send Any Reset

 CONFIRM Send OK Reset

PROG-ERROR Receive

Other Reset

 ABEND Any Any Reset

 LOCAL Deallocate Any Reset

PREPARE-TO-
RECEIVE

Send OK or
PROG-ERROR

Receive

Other Deallocate

RECEIVE-AND- Send or receive OK, Data
complete

Receive

WAIT OK, Send Send

PROG-ERROR Receive

Other Deallocate

OK, CONFIRM ConfirmR

OK,
CONFIRM-SEND

ConfirmS

OK, CONFIRM-

DEALLOCATE ConfirmD

REQUEST-TO- Receive OK Receive

SEND Other Deallocate

SEND-DATA Send OK Send

PROG-ERROR Receive

Other Deallocate

Chapter 21. Cooperative Processing Commands 21-27

21.15 Understanding conversation states

To issue this
command

The dialog must
be in this state

After this return
code

The dialog is in
this state

SEND-ERROR Send or Receive OK Send

PROG-ERROR Receive

Other Deallocate

ConfirmR OK Send

ConfirmS PROG-ERROR N/A

ConfirmD Other Deallocate

21.15.1 Conversation states in a successful data transfer

In the diagram below, for example, Dialog A on the PC establishes a conversation
with Dialog B on the mainframe. Dialog A sends a request for employee information
to Dialog B. Dialog B processes the request and returns a reply. Matching data is
found and returned. This is the same application shown in the flowchart earlier in this
chapter.

The state changes are noted under the communications commands. Refer back to the
previous flowchart and the sample code if you wish. You can see that Dialog B uses
a RECEIVE-AND-WAIT to switch the line (changing from receive to send state in
preparation for returning data to the PC). Also note the state changes necessary to
deallocate the conversation. (Here, WR represents the WHAT-RECEIVED system
field.)

21-28 CA-ADS Reference

21.15 Understanding conversation states

A successful transaction

Dialog A Dialog B

(A1) ALLOCATE (B1) CONTROL SESSION

State (reset to send) State (receive)

(A2) SEND-DATA Emp-id (B2) RECEIVE-AND-WAIT Emp-id

 State (send) State (receive)

 WR=DATA-COMPLETE

(A3) RECEIVE-AND-WAIT Emp-data

State (send to receive) (B3) RECEIVE-AND-WAIT

State (receive to send)

 WR=SEND

(A6) RECEIVE-AND-WAIT. (B5) SEND-DATA Emp-data

State (receive to State (send)

 deallocate)

 (A7) DEALLOCATE (B6) DEALLOCATE

State (deallocate to State (send to reset)

 reset)

In this transaction:

(A1) initiates conversation with ALLOCATE.

(B1) acknowledges conversation with CONTROL SESSION.

(B2) prepares to receive a request with RECEIVE-AND-WAIT.

(A2) issues SEND-DATA with the employee id as a parameter.

(B3) prepares to send a reply with RECEIVE-AND-WAIT. This command
switches the line. Dialog B changes state from receive to send.

(A3) prepares to receive the employee data.

(B5) returns employee data to Dialog A with SEND-DATA. Dialog A tests for
the PROG-ERROR condition, but does not find it. Dialog A checks that the data
is complete (APPCCODE=OK and WR=DATA-COMPLETE).

(A6) once the data is successfully received, RECEIVE-AND-WAIT prepares to
deallocate resources verifying that Dialog B (currently in control) is ready to end
the conversation.

(B6) flushes the communications buffer and terminates the conversation with
DEALLOCATE.

(A7) releases local resources with DEALLOCATE LOCAL.

Chapter 21. Cooperative Processing Commands 21-29

21.16 Testing APPC status codes and system fields

21.16 Testing APPC status codes and system fields

You can test the values of these codes and fields in your dialogs to determine how
information will be processed. For example, you can refer back to the sample code to
see the use of APPCCODE in the server dialog.

 21.16.1 Status codes

These codes report the status of each communications command performed:

■ APPCCODE provides the category of the message returned from the
communications services for the most recent command executed.

■ APPCERC contains more detailed information about the message returned by
APPCCODE.

 21.16.2 System fields

These system fields track information received from the remote program:

■ WHAT-RECEIVED tells you what was received from the remote program.

■ REQUEST-TO-SEND-RECEIVED tells you whether or not the remote program
is requesting to send data.

21.16.3 When APPC status codes and system field values are
returned

These are the status codes and system fields returned by the communications
commands.

Command APPCCODE APPCERC RECEIVED RECEIVED

ALLOCATE z z

CONFIRM z z z

CONFIRMED z z

DEALLOCATE z z

PREPARE-TO-
RECEIVE

z z

RECEIVE-AND-
WAIT

z z z

REQUEST-TO-
SEND

z z

SEND-DATA z z z

SEND-ERROR z z z

21-30 CA-ADS Reference

21.16 Testing APPC status codes and system fields

Keep in mind:

■ Status codes are updated after each communications command executes.

■ A condition can be reported when the communications command that caused the
error executes or when a subsequent communications command executes.

21.16.4 APPCCODE and APPCERC

If an error description says internal error, request technical support from your site. If
your technical support staff can't remedy the problem, make sure they have the
APPCCODE and APPCERC before they call CA Technical Support.

0: OK: The communications command executed successfully. Control has returned
to your CA-ADS application. The current state of the conversation depends on the
specific communications command you issued.

-1: Parameter check: There is a coding error in either the CA-ADS application or
the remote dialog that must be corrected. The syntax is correct, but there is a
mismatch of parameters passed between the two dialogs or the parameters supplied are
invalid.

-3: Allocation error: The specified conversation cannot be allocated.

APPCERC What it means

0 Data is available for the dialog to receive

1 Information other than data is available for the dialog to receive

APPCERC What it means

0 Internal error

10 You issued a CONFIRM command when the conversation was
allocated with a synchronization level of NONE

30 Internal error

31 Internal error

32 Internal error

33 Internal error

34 Internal error

35 Internal error

36 Internal error

Chapter 21. Cooperative Processing Commands 21-31

21.16 Testing APPC status codes and system fields

-4: Resource failure: A resource failure terminated the conversation prematurely.

-5: Deallocate condition: The remote program issued a DEALLOCATE
command.

APPCERC What it means

0 Internal error

1 The conversation cannot be allocated because of a condition that is
not temporary (for example, a session protocol error). Do not retry
the allocation request until the condition is corrected.

2 The conversation cannot be allocated because of a condition that can
be temporary (for example, the secondary application is not
available). If the condition is temporary, you can retry the allocation
request.

3 The remote program rejected the allocation request because it did not
understand the TPN. The TPN must be a task code associated with
the dialog and defined to CA-IDMS/DC if you are trying to allocate
an CA-ADS task.

4 The task-code-name specified on the ALLOCATE command exists
but cannot be started. This is not a temporary condition and must be
resolved by a systems programmer. Do not retry the ALLOCATE
until the situation is corrected.

5 The task-code-name specified on the ALLOCATE command exists
but cannot be started. This is a temporary condition. You can retry
the allocation request.

6 The user specified on the SECURITY parameter of the ALLOCATE
command is not known to the remote program.

7 Internal error.

8 Internal error.

APPCERC What it means

1 The resource failure is not temporary (for example, a session protocol
error). Do not retry the transaction until the condition is corrected.

2 The resource failure can be temporary (for example, a power outage,
a line failure, or a problem with a modem). You can retry the
transaction.

21-32 CA-ADS Reference

21.16 Testing APPC status codes and system fields

-6: Program error: The remote program issued the SEND-ERROR command.
There is an error in the local application that must be corrected.

-7: SVC error: The remote program issued the SEND-ERROR command. There is
an error in the local application that must be corrected.

-8: State error: There is a coding error in your CA-ADS application. The
CA-ADS side of the conversation was not in the correct state to execute the
communications command you specified: for example, you tried to issue
SEND-DATA while in receive state.

In some cases, you can need to issue a DEALLOCATE ABEND to recover from this
error.

-9: Unsuccessful: The conversation command was unsuccessful.

-10: Control session error: The CA-ADS side of the conversation issued an
ALLOCATE command correctly. But the remote program did one of the following:

■ Omitted the CONTROL SESSION command

■ Transmitted a CONTROL SESSION command after another communications
command

■ Transmitted a CONTROL SESSION command whose parameters do not agree
with the ALLOCATE command

This code is returned by the ALLOCATE command. This code can indicate an
internal error.

-11: Format descriptor error: The CA-ADS side of the conversation received an
internal error from presentation services about the format descriptors.

-12: Send-data error: The CA-ADS side of the conversation detected an internal
error or a conversion error. This code is reported by the SEND DATA command.

-13: Receive format error: CA-ADS received an error in a formatted
conversation. This indicates an internal error. This code is reported by the
RECEIVE-AND-WAIT command.

APPCERC What it means

0 The deallocation was normal.

1 The remote program specified the ABEND option on the
DEALLOCATE command or the remote program has abended. Any
data remaining in the CA-ADS communications buffer is purged.

Chapter 21. Cooperative Processing Commands 21-33

21.16 Testing APPC status codes and system fields

 21.16.5 System fields

WHAT-RECEIVED: This variable tells you what was received from the remote
program. It is updated after the RECEIVE-AND-WAIT command is executed.

REQUEST-TO-SEND- RECEIVED: This variable tells you whether or not the
remote dialog issued the REQUEST-TO-SEND command. This variable is updated
after the CONFIRM or the SEND-DATA command executes.

If the local dialog receives REQUEST-TO-SEND then
REQUEST-TO-SEND-RECEIVED is set to 1.

The local dialog resets REQUEST-TO-SEND-RECEIVED to 0 after every CONFIRM,
SEND-DATA, and SEND-ERROR command.

Contents Meaning

DATA-COMPLETE Data was received successfully.

CONFIRM The remote dialog issued a CONFIRM command
and expects the local dialog to reply with the
CONFIRMED command.

CONFIRM-SEND The remote dialog issued a
PREPARE-TO-RECEIVE command with the
CONFIRM option. The local dialog can reply with
either a CONFIRMED or a SEND-ERROR
command.

CONFIRM-DEALLOCATE The remote dialog issued a DEALLOCATE
command with the CONFIRM option. The local
dialog can reply with either a CONFIRMED or a
SEND-ERROR command.

SEND The remote program is in receive state and the local
dialog is now in send state. The local dialog can
now issue a SEND-DATA command.

Contents Meaning

0 The remote program has not requested to send data

1 The remote program is requesting to send data

21-34 CA-ADS Reference

 Chapter 22. OSCaR Commands

22.1 OSCaR command syntax . 22-4
22.1.1 OPEN . 22-4
22.1.2 SEND . 22-5
22.1.3 CLOSE . 22-6
22.1.4 RECEIVE . 22-6

22.2 Sample OSCaR application . 22-7
22.3 OSCaR to APPC Mapping . 22-9

Chapter 22. OSCaR Commands 22-1

22-2 CA-ADS Reference

Purpose: OPEN, SEND, CLOSE, and RECEIVE (OSCaR) commands are an
interface between mainframe CA-ADS dialogs. OSCaR commands run as APPC
commands; that is, as LU6.2 between mainframes. If a mainframe application is
accessing a remote data base rather than a remote application, DDS should be more
efficient.

Concept: OSCaR commands are much simpler than the CA-IDMS SEND/RECEIVE
verb set for APPC cooperative processing in that they provide only a subset of the
complete APPC functionality and synchronization of conversation states is automatic.
It is not necessary to understand the CA-IDMS SEND/RECEIVE verb set, the IBM
APPC verb set, or Conversation States before using OSCaR commands. However, it
is necessary to understand basic cooperative processing concepts.

�� For more information, see Chapter 21, “Cooperative Processing Commands.”

 Coding considerations

■ Only four commands are defined: OPEN, SEND, CLOSE, and RECEIVE

■ APPC and OSCaR commands are mutually exclusive within a single dialog:

– APPC verbs such as ALLOCATE, CONTROL SESSION, and SEND-DATA
are not allowed in dialogs containing OSCaR verbs

– The four OSCaR verbs are not allowed in dialogs containing APPC verbs

■ APPC data areas WHAT-RECEIVED and REQUEST-TO-SEND-RECEIVED
cannot be referenced in a dialog that contains OSCaR commands

■ OSCaR has no parameters equivalent to the FORMAT or SYNC-LEVEL
parameters on the APPC ALLOCATE command

■ OSCaR verbs always run as NOFORMAT

■ Confirmation of user-validated data content must be sent via a user-defined control
record rather than as a separate CONFIRM or SEND-ERROR command

■ Commands to perform synchronization of conversation states,
(RECEIVE-AND-WAIT, PREPARE-TO-RECEIVE, and REQUEST-TO-SEND)
are done automatically by the runtime system when needed. These commands are
needed only when a command is issued and the line is in the wrong state.

�� For more information, see 21.15, “Understanding conversation states.”

■ Error conditions can be detected with autostatus or by examining
ERROR-STATUS for 6901 or APPCCODE for a negative value

Chapter 22. OSCaR Commands 22-3

22.1 OSCaR command syntax

22.1 OSCaR command syntax

 22.1.1 OPEN

Purpose: Establishes a conversation.

 Syntax

��─── OPEN CONVersation ──�

 �─┬──┬─────────────────────────────────�

└─ LU-NAME lu-name ─┬──────────────────┬─┘

└─ MODE mode-name ─┘

 �─┬──�─

└─ TRANSACTION task-code ─┬──┬───

└─ SECURITY user-id ─┬─────────────────────┬─┘

└─ PASSWORD password ─┘

─�──┬───────────────────────── . ───��

 ─┬──┬─┘

└─ LU-NAME lu-name ─┬──────────────────┬─┘

└─ MODE mode-name ─┘

 Parameters

TRANSACTION task-code
Indicates that the dialog runs as a client; task-code names the task to be invoked
on the remote logical unit.

If task-code names a mainframe CA-ADS dialog, it must be defined on the remote
logical unit as invoking program ADSORUN1.

SECURITY user-id
Specifies the identifier of user to be signed on to the remote logical unit.

If SECURITY is not specified, signon is performed with no user identifier.

PASSWORD password
Specifies the password associated with user-id during signon to the remote logical
unit. If PASSWORD is not specified, signon is performed with no password.

LU-NAME lu-name
Specifies a field or string that identifies the 1- through 8-character name of the
logical unit used by the remote dialog.

Lu-name must match the logical unit name of an APPC line defined to the local
CA-IDMS/DC system.

If LU-NAME is not specified, lu-name is the value of the ADSLUNAM attribute
for the user session.

MODE mode-name
Specifies the name used by the remote logical unit to select the mode of
transmission for the conversation.

22-4 CA-ADS Reference

22.1 OSCaR command syntax

Mode-name is either a 1- through 8-character mode name or a variable containing
the mode name.

If MODE is not specified, mode-name is the value of the ADSMODE attribute for
the user session. If there is no ADSMODE attribute, the value is the default mode
name defined by the DLOGMOD parameter within the VTAM definition. If there
is no default mode in the VTAM definition, the dialog aborts.

 Usage

Placement of OPEN CONVERSATION: OPEN must be the first APPC command
encountered in an OSCaR dialog.

OPEN CONVERSATION with no parameters: If no parameters are specified on
OPEN CONVERSATION, the dialog runs as a server.

 22.1.2 SEND

Purpose: Sends a data name to a remote logical unit.

 Syntax

��─── SEND data-name ─┬───────────────┬───────────────────────────────── . ───��

├─ TRANSlate ───┤

└─ NOTRANSlate ─┘

 Parameters

data-name
Identifies the record or element name associated with the dialog to send to the
remote logical unit.

TRANSlate
Not meaningful in a CA-ADS mainframe dialog.

NOTRANSlate
Not meaningful in a CA-ADS mainframe dialog.

 Usage

Restrictions on data name: In a SEND command, data-name must not be or
correspond to the name of:

■ A logical record

■ A built-in function

■ An element defined as pointer, multi-bit binary, or graphic

■ An 88-level element

■ A reserved word, such as SPACES, DATE, CURSOR-ROW

■ A quoted literal

Chapter 22. OSCaR Commands 22-5

22.1 OSCaR command syntax

 22.1.3 CLOSE

Purpose: Ends a conversation.

 Syntax

��─── CLOSE CONVersation ─── . ───��

 Usage

Placement of CLOSE CONVERSATION: CLOSE CONVERSATION must be the
last APPC command encountered in both client and server dialogs that use OSCaR
commands.

 22.1.4 RECEIVE

Purpose: Receives a data name from a remote logical unit.

 Syntax

��─── RECEIVE data-name ─┬───────────────┬────────────────────────────── . ───��

├─ TRANSlate ───┤

└─ NOTRANSlate ─┘

 Parameters

data-name
Identifies the record or element name associated with the dialog to receive from
the remote logical unit.

TRANSlate
Not meaningful in a CA-ADS mainframe dialog.

NOTRANSlate
Not meaningful in a CA-ADS mainframe dialog.

 Usage

Restrictions on data name: In a RECEIVE command, data-name must not be or
correspond to the name of:

■ A logical record

■ A built-in function

■ An element defined as pointer, multi-bit binary, or graphic

■ An 88-level element

■ A reserved word, such as SPACES, DATE, CURSOR-ROW

■ A quoted literal

22-6 CA-ADS Reference

22.2 Sample OSCaR application

22.2 Sample OSCaR application

About this example: This sample application program retrieves
EMPLOYEE/OFFICE data from a remote demo data base. It performs the same
function as the example in 21.2, “Sample cooperative application.” No intermediate
records are needed because the OSCaR verbs support all data types found in the
EMPLOYEE and OFFICE records.

 Client map

RETRIEVE EMPLOYEE DATA

EMPLOYEE ID: ____

 Employee name:

 Office street:

 Office city :

Enter any employee ID.

The employee's name and office address wil be returned.

Client ENTER process

IF EMP-ID-H415 EQ ZEROES DO. !IF NO EMP-ID ENTERED

INITIALIZE RECORDS (EMPLOYEE, OFFICE). ! CLEAR OLD DATA

DISPLAY MESSAGE TEXT 'ENTER AN EMPLOYEE ID'.! REQUEST EMP-ID

END.

IF FIELD EMP-ID-H415 IS CHANGED DO. !IF EMP-ID WAS ENTERED

OPEN CONVERSATION TRANSACTION 'EMPSERVE'.

SEND EMP-ID-H415. ! SEND EMP-ID TO EMPSERV

 RECEIVE EMPLOYEE. ! RETRIEVE EMPLOYEE

 RECEIVE OFFICE. ! RETRIEVE OFFICE

 CLOSE CONVERSATION.

END.

IF EMP-NAME-H415 EQ ALL '_' !DISPLAY RESULTS

DISPLAY MESSAGE TEXT 'EMPLOYEE DOES NOT EXIST'.

 ELSE

DISPLAY MESSAGE TEXT 'EMPLOYEE DISPLAY IS COMPLETE'.

Server PREMAP process

Chapter 22. OSCaR Commands 22-7

22.2 Sample OSCaR application

!______ GET EMP-ID FROM DIALOG EMPCLIEN _____

OPEN CONVERSATION TRANSACTION 'EMPSERVE'.

RECEIVE EMP-ID-H415.

!______ GET EMPLOYEE/OFFICE DATA _____

OBTAIN CALC EMPLOYEE.

IF DB-STATUS-OK DO.

IF SET OFFICE-EMPLOYEE MEMBER

OBTAIN OWNER WITHIN OFFICE-EMPLOYEE.

 ELSE

MOVE ALL '_' TO OFFICE-ADDRESS-H45H.

 END.

 ELSE DO.

MOVE ALL '_' TO EMP-NAME-H415.

!MIGHT INITIALIZE ALL EMPLOYEE FIELDS

!EXCEPT EMP-NAME-H415 AND EMP-IF-H415.

 END.

!______ RETURN RECORDS TO CLIENT _____

SEND EMPLOYEE.

SEND OFFICE.

CLOSE CONVERSATION.

LEAVE ADS.

22-8 CA-ADS Reference

22.3 OSCaR to APPC Mapping

22.3 OSCaR to APPC Mapping

The following table outlines the conversions which can be used to map OSCaR
commands to standard APPC commands. This will allow any CA-IDMS/ADS dialog
using the OSCaR verb set to communicate with any other program using the standard
LU6.2/APPC verb set.

*ADSLUNAM is a user-defined User-Profile attribute. This can be used to define a
default LU name for OPEN commands. Additionally, ADSMODE may be used to
define a default MODE name for the OSCaR OPEN command. For more information
on user profiles, see the CA-IDMS Security Administration Guide.

Command Present
State

APPC Result ADS
Equivalent

#TREQ
Assembler
Equivalent

OPEN

*With
LU-NAME
or
ADSLUNAM
defined

Reset ALLOCATE Allocate... #TREQ
Alloc...

LU-NAME
and
ADSLUNAM
not defined

Reset GET_
ATTRIBUTES

Control-
Session no
format

#TREQ
UIOCB...

SEND Send SEND_DATA Send-Data TREQ Put...

Receive REQUEST_TO_
SEND

SEND_DATA

Request-To-
Send

Send-Data

#TREQ Put

optns= signal

#Treq Put...

CLOSE Deallocate DEALLOCATE_
LOCAL

Deallocate
Local

#TREQ Get...
(receive
deallocate)

Send DEALLOCATE_
SYNC_LEVEL

Deallocate
Sync-Level

#TREQ Put

optns= last

RECEIVE Receive RECEIVE_
AND_WAIT

Receive-
And-Wait

#TREQ Get...

Send PREPARE_TO
_RECEIVE

RECEIVE_
AND_WAIT

Prepare-To
-Receive

Receive-
And-Wait

#TREQ Put

optns= invite

#TREQ Get...

Chapter 22. OSCaR Commands 22-9

22.3 OSCaR to APPC Mapping

22-10 CA-ADS Reference

 11

12 CA-ADS Reference

 Appendix A. System Records

A.1 Overview . A-3
A.2 ADSO-APPLICATION-GLOBAL-RECORD A-4
A.3 ADSO-APPLICATION-MENU-RECORD A-15

Appendix A. System Records A-1

A-2 CA-ADS Reference

A.1 Overview

 A.1 Overview

CA-ADS provides the three system records, listed in the table below. This appendix
describes ADSO-APPLICATION-GLOBAL-RECORD and
ADSO-APPLICATION-MENU-RECORD.

�� For information about the system-supplied status definition record
ADSO-STAT-DEF-REC, see Chapter 10, “Error Handling.”

CA-ADS System Records

ADSO-APPLICATION-GLOBAL-RECORD and ADSO-
APPLICATION-MENU-RECORD have fully addressable fields. At runtime,
information supplied during application definition is moved to the applicable fields in
the system records.

When the fields of a system record are referenced by a dialog, the record must be
associated with the dialog as a work or map record. In applications not defined using
the application compiler, system records are treated like any other work or map
records.

The CA-ADS system records ADSO-APPLICATION-GLOBAL-RECORD and
ADSO-APPLICATION-MENU-RECORD are discussed separately below.

System record Purpose

ADSO-APPLICATION-GLOBAL-RECORD Passes information between dialogs
in an application

ADSO-APPLICATION-MENU-RECORD Holds information for the runtime
system to use in building menus.

ADSO-STAT-DEF-REC Associates level-88 condition names
with status codes during dialog
compilation

Appendix A. System Records A-3

A.2 ADSO-APPLICATION-GLOBAL-RECORD

 A.2 ADSO-APPLICATION-GLOBAL-RECORD

ADSO-APPLICATION-GLOBAL-RECORD is automatically associated with an
application as a global record, unless the record is explicitly deselected on the Global
Records screen while defining the application with the application compiler (ADSA).
If ADSO-APPLICATION-GLOBAL-RECORD is deselected, on the Global Records
screen, the runtime system does not supply runtime information to the application's
dialogs, and dialogs cannot modify runtime flow of control by changing
AGR-CURRENT-RESPONSE.

�� For information about global records, see Chapter 2, “CA-ADS Application
Compiler (ADSA).”

For information about runtime flow of control, see Chapter 4, “CA-ADS Runtime
System.”

The CA-ADS runtime system uses ADSO-APPLICATION- GLOBAL-RECORD in the
following ways:

■ To pass information about the current application to dialogs in the application

■ To allow dialogs to modify the application flow of control (by modifying
AGR-CURRENT-RESPONSE)

■ To provide an additional means of passing information between dialogs (by
assigning values to the AGR-PASSED-DATA and AGR-MESSAGE fields)

One copy of the record is automatically associated with all applications during
application definition.

ADSO-APPLICATION-GLOBAL-RECORD is defined in the data dictionary as
follows:

A-4 CA-ADS Reference

A.2 ADSO-APPLICATION-GLOBAL-RECORD

H1 ADSO-APPLICATION-GLOBAL-RECORD.

 H3 AGR-APPLICATION-NAME PICTURE IS X(8) USAGE IS DISPLAY.

 H3 AGR-CURRENT-FUNCTION PICTURE IS X(8) USAGE IS DISPLAY.

 H3 AGR-NEXT-FUNCTION PICTURE IS X(8) USAGE IS DISPLAY.

 H3 AGR-CURRENT-RESPONSE PICTURE IS X(8) USAGE IS DISPLAY.

 H3 AGR-DEFAULT-RESPONSE PICTURE IS X(8) USAGE IS DISPLAY.

 H3 AGR-TASK-CODE PICTURE IS X(8) USAGE IS DISPLAY.

 H3 AGR-EXIT-DIALOG PICTURE IS X(8) USAGE IS DISPLAY.

 H3 AGR-PRINT-DESTINATION PICTURE IS X(8) USAGE IS DISPLAY.

 H3 AGR-DATE PICTURE IS X(8) USAGE IS DISPLAY.

 H3 AGR-USER-ID PICTURE IS X(32) USAGE IS DISPLAY.

 H3 AGR-SECURITY-CODE PICTURE IS X(32) USAGE IS DISPLAY.

 H3 AGR-INSTALLATION-CODE PICTURE IS X(32) USAGE IS DISPLAY.

 H3 AGR-PASSED-DATA USAGE IS DISPLAY.

H5 AGR-PASSED-ONE PICTURE IS X(32) USAGE IS DISPLAY.

H5 AGR-PASSED-TWO PICTURE IS X(32) USAGE IS DISPLAY.

H5 AGR-PASSED-THREE PICTURE IS X(32) USAGE IS DISPLAY.

H5 AGR-PASSED-FOUR PICTURE IS X(32) USAGE IS DISPLAY.

 H3 AGR-APPLICATION-VERSION PICTURE IS S9(4) USAGE IS COMP.

 H3 AGR-APPL-SECURITY-CLASS PICTURE IS S999 USAGE IS COMP.

 H3 AGR-RESP-SECURITY-CLASS PICTURE IS S999 USAGE IS COMP.

 H3 AGR-PRINT-CLASS PICTURE IS S999 USAGE IS COMP.

 H3 AGR-MODE PICTURE IS X(4) USAGE IS DISPLAY.

88 AGR-STEP-MODE USAGE IS CONDITION-NAME VALUE IS 'STEP'.

88 AGR-FAST-MODE USAGE IS CONDITION-NAME VALUE IS 'FAST'.

 H3 AGR-DATE-FORMAT PICTURE IS X USAGE IS DISPLAY.

88 AGR-MMDDYY USAGE IS CONDITION-NAME VALUE IS 'C'.

88 AGR-DDMMYY USAGE IS CONDITION-NAME VALUE IS 'E'.

88 AGR-YYMMDD USAGE IS CONDITION-NAME VALUE IS 'G'.

88 AGR-YYDDD USAGE IS CONDITION-NAME VALUE IS 'J'.

 H3 AGR-AID-BYTE PICTURE IS X USAGE IS DISPLAY.

88 AGR-ENTER USAGE IS CONDITION-NAME VALUE IS QUOTE.

88 AGR-PF1 USAGE IS CONDITION-NAME VALUE IS '1'.

88 AGR-PF2 USAGE IS CONDITION-NAME VALUE IS '2'.

88 AGR-PF3 USAGE IS CONDITION-NAME VALUE IS '3'.

88 AGR-PF4 USAGE IS CONDITION-NAME VALUE IS '4'.

88 AGR-PF5 USAGE IS CONDITION-NAME VALUE IS '5'.

88 AGR-PF6 USAGE IS CONDITION-NAME VALUE IS '6'.

88 AGR-PF7 USAGE IS CONDITION-NAME VALUE IS '7'.

88 AGR-PF8 USAGE IS CONDITION-NAME VALUE IS '8'.

88 AGR-PF9 USAGE IS CONDITION-NAME VALUE IS '9'.

88 AGR-PF1H USAGE IS CONDITION-NAME VALUE IS ':'.

88 AGR-PF11 USAGE IS CONDITION-NAME VALUE IS '#'.

88 AGR-PF12 USAGE IS CONDITION-NAME VALUE IS '@'.

88 AGR-PF13 USAGE IS CONDITION-NAME VALUE IS 'A'.

88 AGR-PF14 USAGE IS CONDITION-NAME VALUE IS 'B'.

88 AGR-PF15 USAGE IS CONDITION-NAME VALUE IS 'C'.

88 AGR-PF16 USAGE IS CONDITION-NAME VALUE IS 'D'.

88 AGR-PF17 USAGE IS CONDITION-NAME VALUE IS 'E'.

88 AGR-PF18 USAGE IS CONDITION-NAME VALUE IS 'F'.

88 AGR-PF19 USAGE IS CONDITION-NAME VALUE IS 'G'.

Appendix A. System Records A-5

A.2 ADSO-APPLICATION-GLOBAL-RECORD

88 AGR-PF2H USAGE IS CONDITION-NAME VALUE IS 'H'.

88 AGR-PF21 USAGE IS CONDITION-NAME VALUE IS 'I'.

88 AGR-PF22 USAGE IS CONDITION-NAME VALUE IS '¢'.

88 AGR-PF23 USAGE IS CONDITION-NAME VALUE IS '.'.

88 AGR-PF24 USAGE IS CONDITION-NAME VALUE IS '<'.

88 AGR-PA1 USAGE IS CONDITION-NAME VALUE IS '%'.

88 AGR-PA2 USAGE IS CONDITION-NAME VALUE IS '>'.

88 AGR-PA3 USAGE IS CONDITION-NAME VALUE IS ','.

88 AGR-CLEAR USAGE IS CONDITION-NAME VALUE IS '_'.

88 AGR-LPEN USAGE IS CONDITION-NAME VALUE IS '='.

88 AGR-EOF USAGE IS CONDITION-NAME VALUE IS 'N'.

88 AGR-IOERR USAGE IS CONDITION-NAME VALUE IS 'O'.

88 AGR-SERR USAGE IS CONDITION-NAME VALUE IS 'P'.

88 AGR-IERR USAGE IS CONDITION-NAME VALUE IS 'R'.

88 AGR-OERR USAGE IS CONDITION-NAME VALUE IS 'S'.

 H3 AGR-CURRENT-FUNC-TYPE PICTURE IS X USAGE IS DISPLAY.

88 AGR-FUNCTION-DIALOG USAGE IS CONDITION-NAME

VALUE IS 'D'.

88 AGR-FUNCTION-MENU USAGE IS CONDITION-NAME

VALUE IS 'M'.

88 AGR-FUNCTION-SIGNON USAGE IS CONDITION-NAME

VALUE IS 'S'.

 H3 AGR-NEXT-FUNC-TYPE PICTURE IS X USAGE IS DISPLAY.

88 AGR-NEXT-DIALOG USAGE IS CONDITION-NAME VALUE IS 'D'.

88 AGR-NEXT-MENU USAGE IS CONDITION-NAME VALUE IS 'G'.

88 AGR-NEXT-MENU-DIALOG USAGE IS CONDITION-NAME

VALUE IS 'M'.

88 AGR-NEXT-SIGNON USAGE IS CONDITION-NAME VALUE IS 'N'.

88 AGR-NEXT-SIGNON-DIALOG USAGE IS CONDITION-NAME

VALUE IS 'S'.

88 AGR-NEXT-PROGRAM USAGE IS CONDITION-NAME VALUE IS 'P'.

88 AGR-NEXT-SYSTEM-FUNC USAGE IS CONDITION-NAME

VALUE IS 'F'

VALUE IS 'B'

VALUE IS 'O'

VALUE IS 'U'

VALUE IS 'R'

VALUE IS 'T'

VALUE IS 'Q'.

88 AGR-NEXT-FORWARD USAGE IS CONDITION-NAME VALUE IS 'F'.

88 AGR-NEXT-BACKWARD USAGE IS CONDITION-NAME VALUE IS 'B'.

88 AGR-NEXT-POP USAGE IS CONDITION-NAME VALUE IS 'O'.

88 AGR-NEXT-POPTOP USAGE IS CONDITION-NAME VALUE IS 'U'.

88 AGR-NEXT-RETURN USAGE IS CONDITION-NAME VALUE IS 'R'.

88 AGR-NEXT-TOP USAGE IS CONDITION-NAME VALUE IS 'T'.

88 AGR-NEXT-QUIT USAGE IS CONDITION-NAME VALUE IS 'Q'.

 H3 AGR-CTRL-COMMAND PICTURE IS X USAGE IS DISPLAY.

88 AGR-TRANSFER USAGE IS CONDITION-NAME VALUE IS 'T'.

88 AGR-INVOKE USAGE IS CONDITION-NAME VALUE IS 'I'.

88 AGR-LINK USAGE IS CONDITION-NAME VALUE IS 'L'.

88 AGR-RETURN USAGE IS CONDITION-NAME VALUE IS 'R'.

A-6 CA-ADS Reference

A.2 ADSO-APPLICATION-GLOBAL-RECORD

 H3 AGR-SIGNON-SWITCH PICTURE IS X USAGE IS DISPLAY

VALUE IS 'N'.

88 AGR-SIGNON-NOT-DONE USAGE IS CONDITION-NAME

VALUE IS 'N'.

88 AGR-SIGNON-OK USAGE IS CONDITION-NAME VALUE IS 'Y'.

 H3 AGR-DIALOG-NAME PICTURE IS X(8) USAGE IS DISPLAY.

 H3 AGR-FUNC-DESCRIPTION PICTURE IS X(28) USAGE IS DISPLAY.

 H3 AGR-MESSAGE PICTURE IS X(24H) USAGE IS DISPLAY.

 H3 AGR-SIGNON-REQMTS PICTURE IS X USAGE IS DISPLAY.

88 AGR-SIGNON-REQUIRED USAGE IS CONDITION-NAME

VALUE IS 'R'.

88 AGR-SIGNON-OPTIONAL USAGE IS CONDITION-NAME

VALUE IS 'O'.

88 AGR-SIGNON-NOT-ALLOWED USAGE IS CONDITION-NAME

VALUE IS 'N'.

 H3 AGR-MAP-RESPONSE PICTURE IS X(8) USAGE IS DISPLAY.

 H3 FILLER PICTURE IS X(54) USAGE IS DISPLAY.

 Field descriptions

AGR-APPLICATION-NAME
Contains the name of the current application, as specified on the Main Menu
during application definition.

This field is updated once at the beginning of the application.

AGR-CURRENT-FUNCTION
Contains the name of the current function.

This field is updated at the beginning of each function.

AGR-NEXT-FUNCTION
Contains the name of the next function to be executed. The next function is the
function initiated by the response contained in the AGR-CURRENT-RESPONSE
field.

This field is updated on mapin from the terminal.

If a process command modifies AGR-CURRENT-RESPONSE to change the flow
of control, AGR-NEXT-FUNCTION does not have to be changed. On an
EXECUTE NEXT FUNCTION command, the runtime system transfers control to
the function associated with the response.

AGR-CURRENT-RESPONSE
Contains the name of the next response to be executed, as specified by the user.

This field is updated on each mapin from the terminal.

The runtime system executes the response in AGR-CURRENT- RESPONSE when
it encounters an EXECUTE NEXT FUNCTION command. The value in
AGR-CURRENT-RESPONSE can be overwritten by the premap or response
process of a dialog function.

Note that if AGR-CURRENT-RESPONSE is modified by a process command, the
runtime system does not perform security checking.

�� For more information on the AGR-CURRENT-RESPONSE field, see
Chapter 4, “CA-ADS Runtime System.”

Appendix A. System Records A-7

A.2 ADSO-APPLICATION-GLOBAL-RECORD

AGR-DEFAULT-RESPONSE
Contains the name of the default response (if any) for the current function, as
specified on any Function Definition screen with ADSA during application
definition.

This field is updated at the beginning of each function. If the function has no
default response, AGR-DEFAULT-RESPONSE contains blanks.

AGR-TASK-CODE
Contains the task code entered by the user to initiate the application.

This field is updated once at the beginning of the application.

AGR-EXIT-DIALOG
Contains the name of the user exit dialog (if any) associated with the current
function, as specified on the Function Definition screen during application
definition.

This field is updated at the beginning of each function, and is blank if the function
has no user exit dialog.

AGR-PRINT-DESTINATION
Contains the default print destination for the application, as specified on the Main
Menu during application definition.

AGR-PRINT-DESTINATION can be specified in a WRITE PRINTER command
to specify a print destination.

This field is updated once at the beginning of the application and is blank if the
application has no default print destination.

AGR-DATE
Contains the current date in the format specified by the application developer on
the Main Menu during application definition.

This field is updated at the beginning of each premap and response process, and
each menu and menu/dialog function.

AGR-USER-ID
Contains the user id passed to ADSO-APPLICATION-GLOBAL- RECORD from
the AMR-USER-ID field of ADSO- APPLICATION-MENU-RECORD.

This field is updated after a successful user signon to the application and is blank
if signon is unsuccessful or is not performed.

AGR-SECURITY-CODE
Contains the security class associated with the user id, as returned by
CA-IDMS/DC or CA-IDMS/UCF following successful execution of a system
SIGNON function. AGR-SECURITY-CODE is treated as a 256-bit field, with
each bit representing a security class, from 0 to 255. A bit is set to 1 if the user
is authorized at that security class, and is set to 0 if the user is not.

A-8 CA-ADS Reference

A.2 ADSO-APPLICATION-GLOBAL-RECORD

AGR-INSTALLATION-CODE
Contains the installation-defined security code associated with the user id, as
returned by CA-IDMS/DC or CA-IDMS/UCF following successful execution of a
system SIGNON function.

AGR-PASSED-DATA
A group field that consists of the following elements:

AGR-PASSED-ONE
Contains data passed to ADSO-APPLICATION-GLOBAL-RECORD from the
AMR-PASSING field of ADSO-APPLICATION-MENU- RECORD on mapin
from the terminal.

Note that if the user does not enter data in AMR- PASSING,
AGR-PASSED-ONE is not updated.

AGR-PASSED-TWO
A 32-byte field that the application developer can use as applicable.

AGR-PASSED-THREE
A 32-byte field that the application developer can use as applicable.

AGR-PASSED-FOUR
A 32-byte field that the application developer can use as applicable.

The runtime system never updates fields AGR-PASSED-TWO,
AGR-PASSED-THREE, and AGR-PASSED-FOUR.

AGR-APPLICATION-VERSION
Contains the version number of the current application, as specified by the
application developer on the Main Menu during application definition.

This field is updated once at the beginning of the application.

AGR-APPL-SECURITY-CLASS
Contains the security class associated with the current application, as specified
during application definition.

This field is updated once at the beginning of the application.

AGR-RESP-SECURITY-CLASS
Contains the security class associated with the response contained in the
AGR-CURRENT-RESPONSE field, as specified on the Response Definition
screen during application definition.

This field is updated on mapin from the terminal.

Note that if AGR-CURRENT-RESPONSE is modified by a process command, the
runtime system does not perform security checking.

AGR-PRINT-CLASS
Contains the default print class for the application, as specified on the General
Options screen during application definition.

AGR-PRINT-CLASS can be specified in a WRITE PRINTER command to
specify a print class.

Appendix A. System Records A-9

A.2 ADSO-APPLICATION-GLOBAL-RECORD

This field is updated once at the beginning of the application and is blank if the
application has no default print class.

AGR-MODE
Contains the value passed to ADSO-APPLICATION-GLOBAL- RECORD from
the AMR-MODE field of ADSO-APPLICATION- MENU-RECORD. The
following level-88 condition names are defined for AGR-MODE:

AGR-STEP-MODE
AGR-MODE contains the value STEP.

AGR-FAST-MODE
AGR-MODE contains the value FAST.

This field is updated at the beginning of the application with the default mode
specified on the Main Menu during application definition.

AGR-DATE-FORMAT
Contains a value indicating the date format specified by the application developer
on the Main Menu during application definition. The following level-88 condition
names are defined for AGR-DATE-FORMAT:

AGR-MMDDYY
AGR-DATE-FORMAT contains the value C.

AGR-DDMMYY
AGR-DATE-FORMAT contains the value E.

AGR-YYMMDD
AGR-DATE-FORMAT contains the value G.

AGR-YYDDD
AGR-DATE-FORMAT contains the value J.

This field is updated once at the beginning of the application.

AGR-AID-BYTE
Contains the AID byte that represents the control key pressed by the user.

A level-88 condition name is defined for each possible value.

AGR-CURRENT-FUNC-TYPE
Contains a value indicating the type of function named in the
AGR-CURRENT-FUNCTION field. The following level-88 condition names are
defined for AGR-CURRENT-FUNC-TYPE:

AGR-FUNCTION-DIALOG
AGR-CURRENT-FUNC-TYPE contains the value D.

AGR-FUNCTION-MENU
AGR-CURRENT-FUNC-TYPE contains the value M.

AGR-FUNCTION-SIGNON
AGR-CURRENT-FUNC-TYPE contains the value S.

This field is updated at the beginning of each function.

A-10 CA-ADS Reference

A.2 ADSO-APPLICATION-GLOBAL-RECORD

AGR-NEXT-FUNC-TYPE
Contains a value indicating the type of the function named in the
AGR-NEXT-FUNCTION field. The following level-88 condition names are
defined for AGR-NEXT-FUNC-TYPE:

AGR-NEXT-DIALOG
AGR-NEXT-FUNC-TYPE contains the value D.

AGR-NEXT-MENU
AGR-NEXT-FUNC-TYPE contains the value G.

AGR-NEXT-MENU-DIALOG
AGR-NEXT-FUNC-TYPE contains the value M.

AGR-NEXT-SIGNON
AGR-NEXT-FUNC-TYPE contains the value N.

AGR-NEXT-SIGNON-DIALOG
AGR-NEXT-FUNC-TYPE contains the value S.

AGR-NEXT-PROGRAM
AGR-NEXT-FUNC-TYPE contains the value P.

AGR-NEXT-SYSTEM-FUNC
AGR-NEXT-FUNC-TYPE contains the value F, B, O, U, R, T, or Q.

AGR-NEXT-FORWARD
AGR-NEXT-FUNC-TYPE contains the value F.

AGR-NEXT-BACKWARD
AGR-NEXT-FUNC-TYPE contains the value B.

AGR-NEXT-POP
AGR-NEXT-FUNC-TYPE contains the value O.

AGR-NEXT-POPTOP
AGR-NEXT-FUNC-TYPE contains the value U.

AGR-NEXT-RETURN
AGR-NEXT-FUNC-TYPE contains the value R.

AGR-NEXT-TOP
AGR-NEXT-FUNC-TYPE contains the value T.

AGR-NEXT-QUIT
AGR-NEXT-FUNC-TYPE contains the value Q.

This field is updated on mapin from the terminal.

AGR-CTRL-COMMAND
Contains a value indicating the control command associated with the response
named in the AGR-CURRENT-RESPONSE field, as specified on the Response
Definition screen during application definition. The following level-88 condition
names are defined for AGR-CTRL-COMMAND:

AGR-TRANSFER
AGR-CTRL-COMMAND contains the value T.

Appendix A. System Records A-11

A.2 ADSO-APPLICATION-GLOBAL-RECORD

AGR-INVOKE
AGR-CTRL-COMMAND contains the value I.

AGR-LINK
AGR-CTRL-COMMAND contains the value L.

AGR-RETURN
AGR-CTRL-COMMAND contains the value R.

This field is updated on mapin from the terminal. If a process command
modifies AGR-CURRENT-RESPONSE to change the flow of control,
AGR-CTRL-COMMAND does not have to be changed. On an EXECUTE
NEXT FUNCTION command, the runtime system uses the control command
associated with the response.

AGR-SIGNON-SWITCH
Contains a value indicating whether a system SIGNON function was performed
for the current application. The following level-88 condition names are defined
for AGR-SIGNON-SWITCH:

AGR-SIGNON-NOT-DONE
AGR-SIGNON-SWITCH contains the value N.

AGR-SIGNON-OK
AGR-SIGNON-SWITCH contains the value Y.

AGR-DIALOG-NAME
Contains the name of the dialog or user program (if any) associated with the
function named in the AGR-CURRENT-FUNCTION field.

This field is updated at the beginning of a dialog, menu/dialog, or user program
function, and is blank if the function is not associated with a dialog or user
program.

AGR-FUNC-DESCRIPTION
Contains the description of the function named in the AGR-
CURRENT-FUNCTION field, as specified on the Function Definition screen
during application definition.

This field is updated at the beginning of each function and is blank if the function
does not contain a description.

AGR-MESSAGE
AGR-MESSAGE is a 240-byte field that the application developer can use, as
necessary. The runtime system never updates this field. (This field can be used
for pass data.)

AGR-SIGNON-REQMTS
Contains a value indicating the signon requirements for the current application, as
specified during application definition. The following level-88 condition names
are defined for AGR-SIGNON-REQMTS:

AGR-SIGNON-REQUIRED
AGR-SIGNON-REQMTS contains the value R.

A-12 CA-ADS Reference

A.2 ADSO-APPLICATION-GLOBAL-RECORD

AGR-SIGNON-OPTIONAL
AGR-SIGNON-REQMTS contains the value O.

AGR-SIGNON-NOT-ALLOWED
AGR-SIGNON-REQMTS contains the value N.

This field is updated once at the beginning of the application.

AGR-MAP-RESPONSE
Contains a response name entered by the user in a field that maps to
AGR-MAP-RESPONSE. AGR-MAP-RESPONSE performs the same function as
a $RESPONSE map field. The application developer can initialize the
AGR-MAP-RESPONSE field with a default response name.

If both AGR-MAP-RESPONSE and $RESPONSE are defined for a map, a value
in the AGR-MAP-RESPONSE field has precedence over a value entered in the
$RESPONSE field. Once the AGR-MAP- RESPONSE field is initialized with a
value, that value remains in the AGR-MAP-RESPONSE field until it is
reinitialized with a new value either by process code or by the user.

Note: The $RESPONSE map field can also be initialized by process code,
through the $RESPONSE system-supplied data field.

For information about the $RESPONSE system-supplied data field, see
Chapter 11, “Variable Data Fields” or refer to CA-IDMS Mapping Facility.

�� For descriptions of the screens used during an application definition session
using the CA-ADS application compiler, see Chapter 2, “CA-ADS Application
Compiler (ADSA).”

Usage: The following example illustrates the role of ADSO-APPLICATION-
GLOBAL-RECORD during runtime execution of an application.

During execution of a nonmenu dialog function, the user selects a response that
initiates either the FORWARD or BACKWARD system function. The following
values are established in ADSO-APPLICATION-GLOBAL-RECORD:

■ AGR-NEXT-FUNCTION contains FORWARD or BACKWARD, as applicable.

■ AGR-CURRENT-RESPONSE contains the name of the response that initiates the
FORWARD or BACKWARD system function.

■ AGR-AID-BYTE contains the AID byte representing the control key pressed by
the user.

■ AGR-NEXT-FUNC-TYPE contains F or B, as applicable.

■ AGR-CTRL-COMMAND contains a blank (X'40').

All other fields in the record remain unchanged.

The dialog can now access these fields to do its own paging, provided that
ADSO-APPLICATION-GLOBAL-RECORD is defined to the dialog as a work record.
(Automatic paging by the runtime system is performed only for menu functions.)

Appendix A. System Records A-13

A.2 ADSO-APPLICATION-GLOBAL-RECORD

�� For more information on the use of ADSO-APPLICATION-GLOBAL-RECORD,
refer to CA-ADS Application Design Guide.

A-14 CA-ADS Reference

A.3 ADSO-APPLICATION-MENU-RECORD

 A.3 ADSO-APPLICATION-MENU-RECORD

The CA-ADS runtime system builds menus by storing information in
ADSO-APPLICATION-MENU-RECORD. This record is associated with maps used
by menu and menu/dialog functions.

The menu map can be system-defined or user-defined. If a menu map is user-defined,
ADSO-APPLICATION-MENU-RECORD must be explicitly associated with the map
when it is defined.

�� For more information on menu maps, see Chapter 4, “CA-ADS Runtime System.”

Usage: In a menu/dialog function, ADSO-APPLICATION-MENU-RECORD is
initialized at the beginning of the dialog, and its fields are primed by the runtime
system when the map is displayed.

Thus, for example, at the beginning of a menu/dialog, AMR-PASSING does not
contain any value passed by the previous menu function (AGR-PASSED-ONE of
ADSO-APPLICATION-GLOBAL- RECORD does); and any value moved to a field in
ADSO- APPLICATION-MENU-RECORD will be overwritten when the menu map is
displayed.

ADSO-APPLICATION-MENU-RECORD is defined in the data dictionary as follows:

H1 ADSO-APPLICATION-MENU-RECORD.

H3 AMR-PAGE PICTURE IS S99 USAGE IS COMP.

H3 AMR-TOTAL-PAGES PICTURE IS S99 USAGE IS COMP.

H3 AMR-NEXT-PAGE PICTURE IS S99 USAGE IS COMP.

H3 AMR-HEADING PICTURE IS X(237) USAGE IS DISPLAY.

H3 AMR-HDG REDEFINES AMR-HEADING USAGE IS DISPLAY.

H5 AMR-HL1 PICTURE IS X(79) USAGE IS DISPLAY.

H5 AMR-HL2 PICTURE IS X(79) USAGE IS DISPLAY.

H5 AMR-HL3 PICTURE IS X(79) USAGE IS DISPLAY.

H3 AMR-DATE PICTURE IS X(8) USAGE IS DISPLAY.

H3 AMR-DIALOG PICTURE IS X(8) USAGE IS DISPLAY.

H3 AMR-RESPONSE-FIELD PICTURE IS X(8) USAGE IS DISPLAY.

H3 AMR-MODE PICTURE IS X(4) USAGE IS DISPLAY.

H3 AMR-PASSING PICTURE IS X(32) USAGE IS DISPLAY.

H3 AMR-USER-ID PICTURE IS X(32) USAGE IS DISPLAY.

H3 AMR-PASSWORD PICTURE IS X(8) USAGE IS DISPLAY.

H3 AMR-SELECT-SECTION USAGE IS DISPLAY OCCURS 5H TIMES.

H5 AMR-SELECT PICTURE IS X USAGE IS DISPLAY.

H5 AMR-RESPONSE PICTURE IS X(8) USAGE IS DISPLAY.

H5 AMR-KEY PICTURE IS X USAGE IS DISPLAY.

H5 AMR-DESCRIPTION PICTURE IS X(28) USAGE IS DISPLAY.

 Field descriptions

Appendix A. System Records A-15

A.3 ADSO-APPLICATION-MENU-RECORD

AMR-PAGE
Maps to the PAGE field.

AMR-PAGE contains the number of the currently displayed page of the menu
screen.

AMR-TOTAL-PAGES
Maps to the OF field.

AMR-TOTAL-PAGES contains the total number of pages for the current menu.

AMR-NEXT-PAGE
Maps to the NEXT PAGE field.

AMR-NEXT-PAGE contains the number of the next page to be displayed, as
entered by the user.

AMR-HEADING
(or AMR-HDG) Maps to the heading text area.

AMR-HEADING or AMR-HDG contains the heading text specified by the
application developer on the Function Definition (Menu) screen during application
definition.

AMR-DATE
Maps to the DATE field.

AMR-DATE contains the current date in the format specified by the application
developer on the General Options screen during application definition.

AMR-DIALOG
Maps to the DIALOG field.

If the current menu is associated with a dialog, AMR-DIALOG contains the name
of the menu/dialog, as specified on the Response/Function List screen during
application definition.

AMR-RESPONSE-FIELD
Maps to the RESPONSE field.

AMR-RESPONSE-FIELD contains the name of the next response to be executed,
as entered by the user.

AMR-RESPONSE-FIELD is initialized with the default response for the current
function (if any), as specified on the Function Definition screen during application
definition. If the user does not specify a response, the default response remains in
AMR-RESPONSE-FIELD.

AMR-MODE
Maps to the MODE field.

MODE contains the execution mode for the function, as specified on the Main
Menu during application definition. At runtime, the user can change the
specification in the MODE field on a menu map, thereby modifying the value in
AMR-MODE. The value in AMR-MODE is passed to the AGR-MODE field of
ADSO- APPLICATION-GLOBAL-RECORD each time the menu is mapped in.

A-16 CA-ADS Reference

A.3 ADSO-APPLICATION-MENU-RECORD

AMR-PASSING
Maps to the SEND DATA field.

AMR-PASSING contains data to be passed to the next function, as entered by the
user. CA-ADS transfers the contents of AMR-PASSING to the
AGR-PASSED-ONE field of ADSO- APPLICATION-GLOBAL-RECORD. The
runtime system reinitializes the AMR-PASSING field each time the menu is
mapped out.

AMR-USER-ID
Maps to the ENTER USER ID field of a signon menu.

AMR-USER-ID contains the user id entered by the user.

CA-ADS transfers the contents of AMR-USER-ID to the AGR- USER-ID field of
ADSO-APPLICATION-GLOBAL-RECORD. If a system SIGNON function is
initiated, the runtime system passes the value in AMR-USER-ID to CA-IDMS/DC
or CA-IDMS/UCF (DC/UCF) for security verification.

AMR-PASSWORD
Maps to the PASSWORD field of a signon menu.

AMR-PASSWORD contains the password entered by the user.

If a system SIGNON function is initiated, the runtime system passes the value in
AMR-PASSWORD to DC/UCF for security verification. After passing the value,
CA-ADS overwrites the AMR-PASSWORD field with blanks.

AMR-SELECT-SECTION
Maps to the response listing area.

AMR-SELECT-SECTION is a group field that occurs 50 times.

Each valid response associated with the current function is moved to an
occurrence of AMR-SELECT-SECTION. The occurrences are mapped out to the
menu screen one page at a time.

Each occurrence of AMR-SELECT-SECTION consists of the following elements:

AMR-SELECT
Contains the character entered by the user in the one-byte field provided to
select the response.

AMR-RESPONSE
Contains the name of the response, as specified on the Response/Function List
screen during application definition.

AMR-KEY
Contains the AID byte representing the control key that initiates the response,
as specified on the Response/Function List screen during application
definition.

AMR-KEY is translated by a code table to a five-byte map field in order to
display the associated control key.

Appendix A. System Records A-17

A.3 ADSO-APPLICATION-MENU-RECORD

AMR-DESCRIPTION
Contains the description of the response, as specified on the Response
Definition screen during application definition.

�� For descriptions of the screens used during an application definition
session using the CA-ADS application compiler (ADSA), see Chapter 2,
“CA-ADS Application Compiler (ADSA).”

A-18 CA-ADS Reference

Appendix B. CA-ADS Dialog and Application
Reporter

B.1 Overview . B-3
B.2 Dialog reports . B-4
B.3 Application reports . B-15
B.4 Control statements . B-16

B.4.1 APPLICATIONS . B-16
B.4.2 DIALOGS . B-18
B.4.3 LIST . B-21
B.4.4 SEARCH . B-22

B.5 SYSIDMS parameter file . B-24
B.6 JCL and commands to run reports . B-25

Appendix B. CA-ADS Dialog and Application Reporter B-1

B-2 CA-ADS Reference

B.1 Overview

 B.1 Overview

The CA-ADS dialog and application reporter (ADSORPTS) is used to request batch
reports about dialogs and applications. Reports can be summary or detailed. One
dialog and/or application can be reported on, or several. Dialogs and applications to
be included can be specified as a list of names, name ranges, and mask values.

Additional reports (AREPORTs) also provide information about dialogs and their
components that are stored in the data dictionary. The information provided by each
report is shown below.

�� For more information about these reports, see CA-IDMS Reports.

AREPORTs documenting CA-ADS dialogs

This appendix provides the following information about ADSORPTS:

■ A description of the dialog reporting capabilities

■ A description of the application reporting capabilities

■ Syntax rules for control statements

■ JCL and commands for running reports

Report Description

 1 Lists detail information about dialogs and their components

 2 Lists information about specified dialogs

 3 Lists all dialogs associated with specified processes

 4 Lists all dialogs associated with specified records.

 5 Lists all dialogs associated with specified subschemas

 6 Lists all dialogs associated with specified maps

Appendix B. CA-ADS Dialog and Application Reporter B-3

B.2 Dialog reports

 B.2 Dialog reports

The dialog reporting capabilities of ADSORPTS enable the application developer to
request any or all of the following reports for one or several dialogs:

Summary reports: These list the following information about the object dialog:

■ The name and version number of the dialog, and the date and time at which the
dialog was compiled

■ The name and version number of the map associated with the dialog, and the date
and time at which the map was compiled

■ The name and version number of the schema associated with the dialog

■ The name of the subschema associated with the dialog

■ The dialog's autostatus specification

■ The dialog's FDB size

Processes reports: These list the module source statements for the premap and
response processes associated with the object dialog. Source statements from included
process modules are listed separately.

For each module listed, the following information is provided:

■ The name and version number of the module

■ The date on which the module was created, the date on which the module was last
modified, and the ids of the users who created and modified the module

Note: The cross-reference report options are available with processes.

Records reports: These list the following information:

■ The dictionary definitions for all records associated with the dialog

■ The decimal position and hexadecimal offset of the fields in the listed records

■ The lengths of the fields in the listed records

FDBLIST reports: These list the contents of the Fixed Dialog Block (FDB) for the
dialog. The FDBLIST report includes the following information:

■ General information, such as the dialog's name and compilation date, its map
name and compile date, and its subschema description.

■ Record descriptions contained in the Record Description Elements (RDEs).

■ Premap process information contained in the Premap Process Element (PME).

■ Response process information contained in the Response Process Elements (RSEs).

■ Object code contained in the Process Object Code Table. One Process Object
Code Table is associated with each PME and RSE of an FDB that contains object
code.

B-4 CA-ADS Reference

B.2 Dialog reports

■ Command information contained in the Command Element (CME). One or more
CMEs can be associated with a PME or RSE.

■ Executable code and vector call information contained in the Executable
Code/Vector Call Offset Table. One Executable Code/Vector Call Offset Table is
associated with each PME and RSE of an FDB that contains object code.

■ Included process module information in the Included Module Table (MDTA).
One MDTA is displayed for each process in a dialog that has included modules.

Note that the representation of premap and response process information in a dialog's
FDB and, consequently, the representation of this information in the report, depend on
how the dialog was compiled, as follows:

■ If the dialog was compiled with the symbol table option enabled, premap and
response process commands are converted in the FDB to a series of command
elements (CMEs).

■ If the dialog was compiled without the symbol table option, premap and response
process commands are converted in the FDB to object code. The object code for
a command can be either an item of executable code or a vector call that
references a CME.

�� For more information on using the symbol table option, see Chapter 3, “CA-ADS
Dialog Compiler (ADSC).”

Note: Dialogs being reported on by ADSORPTS should be compiled with the
diagnostic tables option enabled. ADSORPTS uses diagnostic tables to format
premap and response process information. If a dialog's FDB does not contain
diagnostic tables, ADSORPTS produces an unformatted report wherever
formatting is not possible.

For more information on compiling a dialog with diagnostic tables, see
Chapter 3, “CA-ADS Dialog Compiler (ADSC).”

Fixed Dialog Block field descriptions: The following table lists the fields
displayed in the FDBLIST report.

Group Field Description

FDB ID Fixed dialog block identifier

NAME Dialog name

DATE Date dialog compiled

TIME Time dialog compiled

MPNM Map name

MPDT Date map compiled

MPTM Time map compiled

Appendix B. CA-ADS Dialog and Application Reporter B-5

B.2 Dialog reports

Group Field Description

SCHNM Schema name

SSNM Subschema name

RDEA Offset — start of record table

PMEA Offset — start of premap element

RSEA Offset — start of response table

LITA Offset — start of literal pool

SSANA Offset — subschema area name table

NSSAN Number of subschema area names

SVER Schema version

MPVER Map version

DVER Dialog version

NRECS Number of map records

NFLDS Number of map fields

NDREC Number of dialog records

RSPMI MRE index of map response field

MSGMI MRE index of map message field

SEGVW MRB — subschema segmented view

FLAG Fixed dialog block flag byte

LREA Offset — first logical record RDE

ASRA Offset — status definition record ASR

RLSE CA-ADS release

FLAG2 FDB flag byte 2

MAPPG Map paging type

HEXTA Offset — FDB header extension area

MDBO Offset — map descriptor block (MDB)

FLAG3 FDB flag byte 3

PREFX Message prefix

DRSPO Offset — default response process

FDEO Offset — format description headers (FDH)
and elements (FDE)

B-6 CA-ADS Reference

B.2 Dialog reports

Group Field Description

FHE
(FDB header
 extension)

NODE Alternate DB name

DICT Alternate dictionary name

 SDDN Suspense file DD name

DCLA Offset —
SQL declaration
process

SQLAM SQL Access module name

SQLTM SQL time format

SQLDT SQL date format

SQLFL SQL compliance flag

MDB (map
descriptor
block)

MPNAM Map name (batch)

NEXT Offset — next MDB

DATE Date map compiled

TIME Time map compiled

VER Version

NRECS Number of records

NFLDS Number of fields

RSPMI MRE index of map response field

FLG1 Flag byte 1

DDNAM File/ddname

CRECL Compressed length for output map external
record

RECL Real external record length

CRECO Offset — compressed external record

SSAN Subschema area names

ASR NAME Status definition record name

VER Status definition record version

RDE NAME Record name

Appendix B. CA-ADS Dialog and Application Reporter B-7

B.2 Dialog reports

Group Field Description

NRDEA Offset — next RDE

RECL Record length (except logical records)

NLRE Number of logical record elements

VER Record version

INDX Relative variable record element index entry

MINDX Map record index

FLG1 Flag byte 1

FLG2 Flag byte 2

CRECL Compressed INIT record size

INTOF Offset — RDEINITV within RDE to the
compressed initialized record

NLRA Offset — next logical record RDE (logical
records only)

FLG3 Flag byte 3

IMNDX Input map record index

OMNDX Output map record index

SCHML Length of schema name when created from
an SQL table

SCHMO Offset into RDE of schema name when
created from an SQL table

INITV Initial value (in compressed format)

FDH (format
description
header)

LEN Length of format description

ID Format identifier

FDES Start of format descriptor element

FDE (format
description
element)

TYPE Element type

FLAGS Flag byte

PEND Type dependent section

B-8 CA-ADS Reference

B.2 Dialog reports

Group Field Description

DCL
(declaration
module)

NAME Declaration module name

VER Declaration module version

DATLU Date module last updated

DATCR Date module last created

PME NAME Premap process name

LASTB Offset of last byte in PME

RATA Offset to ready area table

FCMEA Offset to first CMEi

PVER Process version

NCMES Number of CMEs in responsej

NEWF Initialized to X'FF' if new format

FLAG1 Flag byte

NMDTE Number of module table entries

LNTA Offset of line number table

DATLU Date module last updated

DATCR Date module created

MDTA Offset of included module table

OFTBL Offset to executable code/vector call offset
table

RSE NAME Response process name

NXTA Offset of next RSE in FDB

LASTB Offset of last byte in response process

RATA Offset to ready area table

FCMEA Offset to first CMEi

PVER Process version

NCMES Number of CMEs in responsej

PFKEY PF key for response

FUNLN Length of response field

OFUNC Start old-format function code

Appendix B. CA-ADS Dialog and Application Reporter B-9

B.2 Dialog reports

Group Field Description

FLAG1 Flag byte

FUNOF Offset within RSE to function code

NMDTE Number of module table entries

LNTA Offset of line number table

DATLU Date module last updated

DATCR Date module created

MDTA Offset of included module table

OFTBL Offset to executable code/vector call offset
table

FUNC Response field value

PROCESS
OBJECT CODE
TABLE

ICMD#
GENERATED
CODE

Internal command number Executable code
and vector calls

CME CLASS Command element major class

FUNC Command element function

NXTA Offset to next CME from first CME within
PME or RSE

NEXT Offset of next CME with FDB

INCLUDED
MODULE

Name of included module from which CME
was generated

VERS Included module version

SEQ# IDD sequence number

FLAG1 First flag byte

FLAG2 Second flag byte

FLAG3 Third flag byte

FLAG4 Fourth flag byte

ICMD# Internal command number

BODY Parameter for use by run-time system

EXEC CODE/
VECTOR
CALL
OFFSET
TABLE

ICMD# Internal command number

B-10 CA-ADS Reference

B.2 Dialog reports

i If the FDB contains object code, the FCMEA indicates the offset to the first item of
object code in the Process Object Code Table.

j If the FDB contains object code, the NCMES contains the original number of CMEs
before their conversion to executable code and vector calls.

Vector call codes The following table lists vector call codes and their associated
process commands.

Group Field Description

VECTOR # Vector code

CODE/CME
LEN

Length of object code, if executable code;
length of CME, if a vector call

CODE OFF Offset from first item of object code in
process

VECTOR CALL Identifies an ICMD as a vector call

RAT
TABLE

Ready Area Table

INCLUDED
MODULE
TABLE

PROCESS Included module name

VER Included module
version

DATLU Date included module last updated

DATCR Date included module created

LIT POOL Literal pool

Appendix B. CA-ADS Dialog and Application Reporter B-11

B.2 Dialog reports

Vector code Process command

 0000
 0001
 0002
 0003
 0004
 0005
 0006
 0007
 0008
 0009
 000A
 000B
 000C
 000D
 000E
 000F

 Database command
Database command — logical record

 ABORT
 INVOKE
 TRANSFER
 RETURN
 DISPLAY
 --
 LEAVE
 LINKT
 Assignment command
 Conditional command
 WHILE REPEAT
 Internal branch
 Subroutine call
 --

 0010
 0011
 0012
 0013
 0014
 0015
 0016
 0017
 0018
 0019
 001A
 001B
 001C
 001D
 001E
 001F

 ON
 ADD
 SUBTRACT
 MULTIPLY
 DIVIDE
 MOVE
 COMPUTE
 MODIFY MAP
 (DC) ACCEPT
 PUT/GET/DELETE SCRATCH
 PUT/GET/DELETE QUEUE
 WRITE PRINTER
 INITIALIZE RECORDS
 KEEP LONGTERM
 SNAP
 COMMIT

B-12 CA-ADS Reference

B.2 Dialog reports

Debugging information: The information provided in the dialog reports generated
by ADSORPTS can be used for debugging. For example, when the CA-ADS runtime
system causes a dialog to abnormally terminate, it sends messages to the system log.
The messages provide the following information:

■ The reason for the abnormal termination.

■ The name of the aborted dialog.

■ The name of the process that was executing at the time of the termination.

■ The hexadecimal offset within the Fixed Dialog Block (FDB) of the command that
was executing at the time of the termination. If the FDB does not contain object
code, the offset is to the CME representing the command. If the FDB contains
object code, the offset is to the object code that references the CME representing
the command.

Vector code Process command

 0020
 0021
 0022
 0023
 0024
 0025
 0026
 0027
 0028
 0029
 002A
 002B
 003D
 003E
 003F

 ROLLBACK TASK
EXECUTE NEXT FUNCTION

 --
 --

Last vector call; end of process
 PUT DETAIL
 GET DETAIL
 WRITE TRANSACTION
 READ TRANSACTION
 CONTINUE

WRITE TO LOG
CLOSE FILE MAPS

 ALLOCATE
 CONTROL SESSION
 SEND-DATA
 CONFIRM

 0040
 0041
 0042
 0043
 0044
 0045
 0046
 0047
 0048
 0049
 004A
 004B
 004C

 CONFIRM
 CONFIRMED
 REQUEST-TO-SEND
 SEND-ERROR
 RECEIVE-AND-WAIT
 PREPARE-TO-RECEIVE
 DEALLOCATE
 SQL call
 TRACE
 OPEN
 CLOSE
 SEND
 RECEIVE

Appendix B. CA-ADS Dialog and Application Reporter B-13

B.2 Dialog reports

■ The IDD sequence number (SEQ#) of the source line containing the command that
caused the abend.

■ The internal command number (ICMD#) of the source line containing the
command that caused the abend.

Note: The information above is also displayed on the Dialog Abort Information
screen, if enabled.

For a discussion of the Dialog Abort Information screen, see Chapter 4,
“CA-ADS Runtime System.”

The information in the system messages can be used in conjunction with the FDBLIST
report to determine the command that caused the abend. The internal command
number and the hexadecimal offset of the problem command can both be used to
locate the command as it is represented in the Process Object Code Table, the list of
CMEs, and the Executable Code/Vector Call Offset Table. A CME displays the
process command that it represents; an item in the Process Object Code Table and the
Executable Code/Vector Call Offset Table displays the vector code of the command, as
described in the vector call codes table earlier in this appendix.

B-14 CA-ADS Reference

B.3 Application reports

 B.3 Application reports

The application reporting capabilities of ADSORPTS enable the application developer
to request any or all of the following reports for one or several applications:

■ Summary reports list information about task codes, global records, functions, and
responses.

■ Records reports list information about global records.

■ Functions/responses detail reports list information about functions, responses,
and the relationships between functions and responses.

■ Functions/responses summary reports list the relationships between functions
and responses.

Additionally, all of the application reports list basic information about the application,
such as security requirements and application-wide defaults.

Appendix B. CA-ADS Dialog and Application Reporter B-15

B.4 Control statements

 B.4 Control statements

ADSORPTS is driven by five control statements, as shown below.

Summary of the ADSORPTS control statements

Control statement Purpose

APPLICATIONS Specifies the applications for which reports are being
requested and the reports desired for the applications

DIALOGS Specifies the dialogs for which reports are being requested
and the reports desired for the dialogs

LIST Controls the online or printed format of the ADSORPTS
output

SEARCH Specifies whether ADSORPTS searches in the load
(core-image) library or the load area for the dialogs and
applications specified by the DIALOGS and
APPLICATIONS control statements

 B.4.1 APPLICATIONS

Purpose: Generates reports for specified applications.

 Syntax:

��─── APPLications = ───�

 �─┬─ ALL ──┬─ , ─�

│ ┌─────────────────────── , ──────────────────────────┐ │

└─┬───┬─↓─┬─ application-name ─────────────────────────────┬─┴─┬───┬─┘

└ (─┘ ├─ application-mask-value ───────────────────────┤ └) ┘

└─ low-application-name - high-application-name ─┘

 �───┬───┬── , ───�

└─ VERsions = ───┬─ ALL ← ────────────────────────────────────┬─┘

├─ version-number ───────────────────────────┤

└─ low-version-number - high-version-number ─┘

 �───┬───┬────────────────��

└─ REPORTs = ────┬─ ALL ─────────────────────────────┬──┘

│ ┌───────────────────┐ │

└─┬───┬─↓─┬── SUMmary ← ──┬─┴─┬───┬─┘

└ (┘ ├┬─ RECords ─┬──┤ └) ┘

│└─ RCD ─────┘ │

├── F/RSUMmary ─┤

└── F/RDETail ──┘

 Parameters

ALL
Specifies all applications in the load area.

B-16 CA-ADS Reference

B.4 Control statements

application-name
Specifies the 1- to 8-character name of a single application.

If the name includes a hyphen (-) as a character, replace with a mask character.
The mask character is the asterisk (*).

application-mask-value
Specifies any application with a name that matches the mask criteria.

The mask character is the asterisk (*); it matches any character. For example,
APPLICATIONS=ORE***** generates the requested reports for all applications
beginning with ORE.

low-application-name - high-application-name
Specifies all applications within the application-name range (inclusive).

The hyphen (-) is required and cannot have surrounding blanks.

Application names and masks that have fewer than eight characters are padded on
the right with blanks.

VERsions =
Introduces the version numbers of the applications for which reports are requested.

ALL
Specifies all versions of the named applications.

ALL is the default when no other version is specified.

version-number
Specifies a single version number for the named applications.

low-version-number - high-version-number
Specifies all versions of the named applications within the version-number range
(inclusive).

The hyphen (-) is required and cannot have surrounding blanks.

REPORTS=
Introduces the reports requested for the named applications.

ALL
Requests the summary, records, and functions/responses detail reports for the
named applications.

SUMmary
Requests summary reports for the named applications.

SUMMARY is the default when no other report is specified.

RECords
Requests records reports for the named applications.

F/RSUMmary
Requests functions/responses summary reports for the named applications.

F/RDETail
Requests functions/responses detail reports for the named applications.

Appendix B. CA-ADS Dialog and Application Reporter B-17

B.4 Control statements

 Usage

Considerations: A maximum of 100 application report requests can be specified in a
single ADSORPTS run. If both dialog and application reports are requested in a
single ADSORPTS run, dialogs are reported first, followed by applications.

Examples: Example 1: Requesting summary reports

The following statement requests summary reports for all versions of applications with
names in the range A through C (inclusive):

APPLICATIONS=(A-C),REPORTS=SUMMARY

Example 2: Requesting all reports

The following statement requests all reports for all applications whose names begin
with ABC and whose version number is 20:

APPLICATIONS=ABC_____,VERSION=2H,REPORT=ALL

Example 3: Requesting summary and records reports for all versions

The following statement requests summary and records reports for all versions of
applications with names that contain the characters S and T in the third and fourth
positions and blanks in the last two positions:

APPLICATIONS=__ST__,REPORTS=(SUMMARY,RECORDS)

Example 4: Requesting functions/responses summary reports

The next statement requests functions/responses summary reports for all versions of the
following applications:

■ Applications whose names begin with the characters ABC

■ Applications whose names contain the characters S and T in the third and fourth
positions and blanks in the last two positions

■ Applications whose names are in the range A through C (inclusive)

APPLICATIONS=(ABC_____,__ST__,A-C),REPORTS=F/RSUMMARY

 B.4.2 DIALOGS

B-18 CA-ADS Reference

B.4 Control statements

Purpose: Generates reports for specified dialogs.

 Syntax

��─── DIALOGs = ──�

 �─┬─ ALL ──┬─ , ───�

│ ┌────────────────────── , ─────────────────────────┐ │

└─┬───┬─↓─┬─ dialog-name ────────────────────────────────┬─┴─┬───┬─┘

└ (─┘ ├─ dialog-mask-value ──────────────────────────┤ └) ┘

└─ low-dialog-name - high-dialog-name ─────────┘

 �───┬───┬── , ───�

└─ VERsions = ───┬─ ALL ← ────────────────────────────────────┬─┘

├─ version-number ───────────────────────────┤

└─ low-version-number - high-version-number ─┘

 �───┬───┬────��

└─ REPORTs = ─┬ ALL ───┬──┘

│ ┌────────────────────────────────────┐ │

└┬───┬─↓─┬ SUMmary ← ─────────────────────┬─┴─┬───┬┘

└ (┘ ├┬ RECords ─┬────────────────────┤ └) ┘

│└ RCD ─────┘ │

├ FDBlist ───────────────────────┤

└ PROcesses ─┬─────────────────┬─┘

└─ sxref-options ─┘

Expansion of sxref-options

��─── with SXREF ─┬───────────────────────┬───────────────────────────────────��

└─ (─┬─ LONG ────┬─) ─┘

└─ SHORT ← ─┘

 Parameters

ALL
Generates reports for all dialogs in the load area.

dialog-name
Specifies the 1- to 8-character name of a single dialog.

If the name includes a hyphen (-) as a character, replace with a mask character.
The mask character is the asterisk (*).

dialog-mask-value
Specifies any dialog with a name that matches the mask criteria. The mask
character is the asterisk (*); it matches any character. For example,
DIALOGS=DCB***** generates the requested reports for all dialogs beginning
with DCB.

low-dialog-name - high-dialog-name
Specifies all dialogs within the dialog-name range (inclusive).

The hyphen (-) is required and cannot have surrounding blanks.

Dialog names and masks that have fewer than eight characters are padded on the
right with blanks.

VERSIONS =
Introduces the version numbers of the dialogs for which reports are requested.

Appendix B. CA-ADS Dialog and Application Reporter B-19

B.4 Control statements

ALL
Specifies all versions of the named dialogs.

ALL is the default when no other version is specified.

version-number
Specifies a single version number for the named dialogs.

low-version-number - high-version-number
Specifies all versions of the named dialogs within the version-number range
(inclusive). The hyphen (-) is required and cannot have surrounding blanks.

REPORTS =
Introduces the reports requested for the named dialogs.

ALL
Requests all reports (that is, the summary, processes, records, and FDBLIST
reports) for the named dialogs.

SUMmary
Requests summary reports for the named dialogs.

SUMMARY is the default when no other report is specified.

RECords
Requests records reports for the named dialogs.

FDBlist
Requests FDBLIST reports for the named dialogs.

PROcesses
Requests processes reports for the named dialogs.

sxref-options
Specifies sorted cross-reference report options.

 with SXREF
Requests a sorted cross-reference for process reports. The usage of all data names
and subroutine calls is cross-referenced.

LONG
Specifies that all elements be included in the report.

SHORT
Specifies that only elements that are referenced be included in the report.

SHORT is the default.

Note: When specifying the cross-reference option, the Master Function Table
(RHDCEVBF) must reside in either the load area or the load library.

 Usage:

Considerations: A maximum of 100 dialog report requests can be specified in a
single ADSORPTS run. If both dialog and application reports are requested in a
single ADSORPTS run, dialogs are reported first, followed by applications, regardless
of their order in the control statements.

B-20 CA-ADS Reference

B.4 Control statements

Examples: Example 1: Requesting summary reports

The following statement requests summary reports for all versions of dialogs with
names in the range A-C (inclusive):

DIALOGS=(A-C),REPORTS=SUMMARY

Example 2: Requesting summary and records reports

The following statement requests all reports for all dialogs with names that contain the
characters S and T in the third and fourth positions and blanks in the last two
positions:

DIALOGS=__ST__,REPORTS=(SUMMARY,RECORDS)

Example 3: Requesting summary reports for all versions

The next statement requests summary reports for all versions of these dialogs:

■ Dialogs whose names begin with the characters ABC

■ Dialogs whose names contain the characters S and T in the third and fourth
positions and blanks in the last two positions

■ Dialogs whose names are in the range A through C (inclusive)

DIALOGS=(ABC_____,__ST__,A-C)

Example 4: Requesting all reports for the dialog named TBXSUMD

The following statement requests all reports for the named dialog:

DIALOGS=TBXSUMD,REPORTS=ALL

 B.4.3 LIST

Purpose: Specifies the format for requested reports.

 Syntax:

��────┬──────────────────────────┬──��

└─ LIST = ──┬── NARROW ────┤

└┬─ FULLlist ─┬┘

└─ WIDE ← ───┘

 Parameters

NARROW
Formats report output for display on a terminal screen.

FULLlist
Formats report output for a 132-character printer.

FULLIST is the default when neither NARROW or FULLIST is specified.

WIDE can be used in place of FULLLIST.

Appendix B. CA-ADS Dialog and Application Reporter B-21

B.4 Control statements

 Usage:

Considerations: If more than one LIST statement is submitted for a single run of
ADSORPTS, the specification in the last LIST statement applies for the entire run.

 B.4.4 SEARCH

Purpose: Specifies where ADSORPTS searches for the object dialogs and
applications.

 Syntax:

��────┬──────────────────────────────┬──��

└─ SEARCH = ──┬─ loadAREA ← ─┬─┘

└─ loadLIB ────┘

 Parameters

loadAREA
Specifies that ADSORPTS searches for the dialogs and applications in the load
area.

LOADAREA is the default when neither LOADAREA OR LOADLIB is
specified.

loadLIB
Specifies that ADSORPTS searches for the dialogs and applications in the load
(core-image) library.

 Usage

 Considerations

■ If more than one SEARCH statement is submitted for a single run of ADSORPTS,
the specification in the last SEARCH statement applies for the entire run.

■ The DIALOGS and APPLICATIONS statements cannot specify a range of dialog
or application names (such as low-dialog-name - high-dialog-name) or a dialog or
application mask (such as dialog-mask-value).

■ The load (core-image) libraries in which the dialogs and applications are located
must be specified in the JCL or commands that run the reports, as follows:

 – OS/390 JCL

In the CDMSLIB statement or, if a CDMSLIB statement is not specified, in
the STEPLIB statement

 – VSE/ESA JCL

In the ASSGN/EXTNT statement for the private core-image library or in the
LIBDEF equivalent

 – VM/ESA commands

In the GLOBAL LOADLIB command, added to the list of libraries

B-22 CA-ADS Reference

B.4 Control statements

– BS2000/OSD JCL In the CDMSLIB chain.

Appendix B. CA-ADS Dialog and Application Reporter B-23

B.4 Control statements

B.5 SYSIDMS parameter file

See CA-IDMS Database Administration, for more information about SYSIDMS
parameters.

B-24 CA-ADS Reference

B.6 JCL and commands to run reports

B.6 JCL and commands to run reports

Sample OS/390 JCL for central version: ADSORPTS (central version)
(OS/390)

//ADSORPTS EXEC PGM=ADSORPTS,REGION=1H24K

//STEPLIB DD DSN=idms.dba.loadlib,DISP=SHR

// DD DSN=idms.loadlib,DISP=SHR

//sysctl DD DSN=idms.sysctl,DISP=SHR

//dcmsg DD DSN=idms.sysmsg.ddldcmsg,DISP=SHR

//SYSLST DD SYSOUT=A

//SYSIDMS DD _

DMCL=dmcl-name

DICTNAME=appldict

Put other SYSIDMS parameters, as appropriate, here

/_

//SYSIPT DD _

Put ADSORPTS parameters, as appropriate, here

/_

//_

Sample OS/390 JCL for local mode ADSORPTS (local mode) (OS/390)

//ADSORPTS EXEC PGM=ADSORPTS,REGION=1H24K

//STEPLIB DD DSN=idms.dba.loadlib,DISP=SHR

// DD DSN=idms.loadlib,DISP=SHR

//dictdb DD DSN=idms.appldict.ddldml,DISP=SHR

//dloddb DD DSN=idms.appldict.ddldclod,DISP=SHR

//dcmsg DD DSN=idms.sysmsg.ddldcmsg,DISP=SHR

//sysjrnl DD DUMMY

//SYSPCH DD syspch-def

//SYSLST DD SYSOUT=A

//SYSIDMS DD _

DMCL=dmcl-name

DICTNAME=appldict

Put other SYSIDMS parameters, as appropriate, here

/_

//SYSIPT DD _

Put ADSORPTS parameters, as appropriate, here

/_

//_

idms.dba.loadlib Data set name of the load library containing the DMCL
and database name table load modules

idms.loadlib Data set name of the load library containing the
CA-IDMS executable modules

sysctl DDname of the SYSCTL file

idms.sysctl Data set name of the SYSCTL file

dcmsg DDname of the system message (DDLDVM/ESAG)
area

idms.sysmsg.ddldcmsg Data set name of the system message
(DDLDVM/ESAG) area

dmcl-name Name of the DMCL load module

Appendix B. CA-ADS Dialog and Application Reporter B-25

B.6 JCL and commands to run reports

Sample VSE/ESA JCL for central version: ADSORPTS (VSE/ESA)

// UPSI b if specified in the IDMSOPTI module

// DLBL userlib

// EXTENT ,nnnnnn

// LIBDEF _,SEARCH=(userlib.cdmslib)

// EXEC ADSORPTS

SYSIDMS parameters

control statements

Sample VSE/ESA JCL for local mode: To execute ADSORPTS in local mode,
perform the following steps:

1. Remove the UPSI specification.

2. Add the following statements before the EXEC statement:

 // DLBL dictdb,'idms.appldict.ddldml',,DA

 // EXTENT sysH15,nnnnnn

 // ASSGN sysH15,DISK,VOL=nnnnnn,SHR

 // DLBL dloddb,'idms.appldict.ddldclod',,DA

 // EXTENT sysH17,nnnnnn

 // ASSGN sysH17,DISK,VOL=nnnnnn,SHR

 // DLBL dmsgdb,'idms.system.ddldcmsg',,DA

 // EXTENT sysH16,nnnnnn

 // ASSGN sysH16,DISK,VOL=nnnnnn,SHR

 // TLBL sysHH9,'idms.tapejrnl',,nnnnnn,,f

 // ASSGN sysHH9,TAPE,VOL=nnnnnn

appldict Name of the application dictionary

dictdb DDname of the application dictionary definition
(DDLDML) area

idms.appldict.ddldml Data set name of the application dictionary definition
(DDLDML) area

dloddb DDname of the application dictionary definition load
(DDLDML) area

idms.appldict.ddldclod Data set name of the application dictionary definition
load (DDLDCLOD) area

sysjrnl DDname of the tape journal file

b appropriate 1- through 8-character UPSI bit switch, as
specified in the IDMSOPTI module

nnnnnn volume serial number of the library

userlib filename of the CA-IDMS/DB library

userlib.cdmslib file-id of the CA-IDMS/DB sublibrary

SYSPCH definition See "ADSA migration syntax considerations" below

SYSIDMS parameters A list of SYSIDMS parameters for this job

B-26 CA-ADS Reference

B.6 JCL and commands to run reports

Sample VM/ESA commands for central version: ADSORPTS (VM/ESA)

FILEDEF SYSCTL DISK sysctl frame a

FILEDEF SYSLST PRINTER

FILEDEF SYSIDMS DISK sysidms input a

FILEDEF SYSIPT DISK rpts input a

GLOBAL LOADLIB idmslib

OSRUN ADSORPTS

Sample VM/ESA commands for local mode: To execute ADSORPTS in local
mode, add the following commands before the OSRUN command:

 FILEDEF sysjrnl TAP1 SL VOLID nnnnnn (RECFM VB LRECL lll BLKSIZE bbb

 FILEDEF dictdb DISK dictdb addr

 FILEDEF dloddb DISK dloddb addr

 FILEDEF dmsgdb DISK dmsgdb addr

idms.appldict.ddldml = file-id of the data dictionary DDLDML area

idms.appldict.ddldclod = file-id of the data dictionary load area

idms.system.ddldcmsg = file-id of the data dictionary message area

idms.tapejrnl = file-id of the tape journal file

dictdb = filename of the data dictionary DDLDML area

dloddb = filename of the data dictionary load area
(DDLDCLOD)

dmsgdb = filename of the data dictionary message area
(DDLDVM/ESAG)

f = file number of the tape journal file

nnnnnn = volume serial number

sysHH9 = logical unit assignment for the tape journal file

sysH15 = logical unit assignment for the data dictionary
DDLDML area

sysH16 = logical unit assignment for the data dictionary
message area

sysH17 = logical unit assignment for the data dictionary load
area

sysctl frame a filename, filetype, and filemode of the SYSCTL file for
the CV to run against

sysidms input a filename, filetype, and filemode of the file containing
the SYSIDMS input parameters

rpts input a file identifier of the file containing ADSORPTS source
statements

idmslib filename of the CA-IDMS/DB LOADLIB library

Appendix B. CA-ADS Dialog and Application Reporter B-27

B.6 JCL and commands to run reports

Specifying central version or local mode: To specify whether ADSORPTS
executes under central version or in local mode, take one of the following actions:

■ Specify either CVMACH=dc/ucf-machine-name (for central version) or *LOCAL*
(for local mode) as the first statement to be submitted to ADSORPTS.
Dc/ucf-machine-name is the 1- through 8-character user identifier of the VM/ESA
virtual machine in which the CA-IDMS/DC or CA-IDMS/UCF (DC/UCF) system
is executing.

bbb = block size of the tape journal file

dictdb = ddname of the data dictionary DDLDML area

dictdb addr = disk address of the data dictionary DDLDML area;
for example, 500

dloddb = ddname of the data dictionary load area
(DDLDCLOD)

dloddb addr = disk address of the data dictionary load area; for
example, 500

dmsgdb = ddname of the data dictionary message area
(DDLDVM/ESAG)

dmsgdb addr = disk address of the data dictionary message area

lll = record length of the tape journal file

B-28 CA-ADS Reference

B.6 JCL and commands to run reports

■ Link edit ADSORPTS with an IDMSOPTI module that specifies either
CVMACH=dc/ucf-machine-name (for central version) or CENTRAL=NO (for
local mode).

�� For instructions to create an IDMSOPTI module, refer to CA-IDMS System
Operations.

■ Code PARM='CVMACH=dc/ucf-machine-name' or PARM='*LOCAL*' on the
OSRUN command used to invoke the compiler. This option is not allowed if the
OSRUN command is issued from a VM/ESA EXEC program; however, it is
allowed if the OSRUN command is issued from a System Product interpreter
(REXX) or EXEC 2 program.

�� For additional information about central version and local mode operations in the
VM/ESA environment, refer to Installation and Maintenance Guide — VM/ESA.

Sample BS2000/OSD JCL for central version: JCL and commands for running
ADSORPTS under central version are shown below for BS2000/OSD JCL:
ADSORPTS (BS2000/OSD)

/ADD-FILE-LINK L-NAME=CDMSLIB,F-NAME=idms.dba.loadlib

/ADD-FILE-LINK L-NAME=CDMSLIB1,F-NAME=idms.loadlib

/ADD-FILE-LINK L-NAME=CDMSLODR,F-NAME=idms.loadlib

/ADD-FILE-LINK L-NAME=sysctl,F-NAME=idms.sysctl,SHARED-UPD=_YES

/ADD-FILE-LINK L-NAME=SYSIDMS,F-NAME=idms.sysidms

/ASSIGN-SYSDTA TO=_SYSCMD

/START-PROG _MOD(ELEM=ADSORPTS,LIB=idms.loadlib,RUN-MODE=_ADV)

control statements

Sample BS2000/OSD JCL for local mode: To execute ADSORPTS in local
mode, perform the following steps:

1. Remove the ADD-FILE-LINK statement for sysctl

2. Add the following statements:

/ADD-FILE-LINK L-NAME=dictdb,F-NAME=idms.appldict.dictdb,SHARED-UPD=_YES

/ADD-FILE-LINK L-NAME=dloddb,F-NAME=idms.appldict.dloddb,SHARED-UPD=_YES

/ADD-FILE-LINK L-NAME=dcmsg,F-NAME=idms.sysmsg.ddldcmsg,SHARED-UPD=_YES

/ADD-FILE-LINK L-NAME=sysjrnl,F-NAME=idms.tapejrnl

idms.loadlib filename of CA-IDMS/DB load library

idms.dba.loadlib data set name of the load library containing the DMCL
and database name table load modules

idms.sysidms filename of the file containing the SYSIDMS
parameters

idms.sysctl filename of the SYSCTL file

sysctl linkname of the SYSCTL file

Appendix B. CA-ADS Dialog and Application Reporter B-29

B.6 JCL and commands to run reports

idms.appldict.ddldml filename of the data dictionary DDLDML area

idms.appldict.ddldclod filename of the data dictionary load area

idms.system.ddldcmsg filename of the data dictionary message area

idms.tapejrnl filename of the tape journal file

dictdb linkname of the data dictionary DDLDML area

dloddb linkname of the data dictionary load area
(DDLDCLOD)

dmsgdb linkname of the data dictionary message area
(DDLDVM/ESAG)

sysjrnl linkname of the tape journal file.

B-30 CA-ADS Reference

 Appendix C. Dialog Statistics

C.1 Overview . C-3
C.2 Collecting selected statistics . C-4
C.3 Enabling dialog statistics . C-8
C.4 Selecting dialogs . C-9
C.5 Setting a checkpoint interval . C-10
C.6 Collecting and writing statistics . C-11
C.7 Statistics reporting . C-12

Appendix C. Dialog Statistics C-1

C-2 CA-ADS Reference

C.1 Overview

 C.1 Overview

The CA-ADS dialog statistics feature allows collection of runtime statistics about
dialog and overhead activity. (Overhead activity is not directly attributable to any
dialog. Overhead activity occurs once at the beginning and once at the end of an
application.) Statistics are collected for each logical terminal through which the
application is executed.

The following aspects of dialog statistics are discussed in this appendix:

■ Collecting selected statistics

■ Enabling dialog statistics

■ Selecting dialogs for collection of individual statistics

■ Setting a checkpoint interval, after which accumulated statistics are written to the
log file at runtime

■ Collecting and writing statistics at runtime

■ Dialog statistics reporting

�� For information about statistics-related DCMT commands described later in this
appendix, refer to CA-IDMS System Tasks and Operator Commands.

Appendix C. Dialog Statistics C-3

C.2 Collecting selected statistics

C.2 Collecting selected statistics

Individual sets of dialog statistics can be collected for selected dialogs or for every
dialog that executes during an application. If statistics are collected for selected
dialogs, one additional set of statistics is collected for all the nonselected dialogs.

Transaction Statistics Block fields: The following table lists the sets of
CA-IDMS/DB and CA-IDMS/DC transaction statistics that can be collected for each
dialog and for overhead activity.

�� For information about transaction statistics, refer to CA-IDMS System Operations.

Type of information Fields

IDENTIFICATION INFORMATION Transaction Statistics Block
 identifier
DC user identifier
DC logical terminal identifier
Dialog identifier
Date that BIND command was issued
Time that BIND command was issued

CA-IDMS/DC STATISTICS Number of programs called
Number of programs loaded
Number of terminal reads
Number of terminal writes
Number of terminal errors
Number of storage acquisitions
Number of scratch gets
Number of scratch puts
Number of scratch deletes
Number of queue gets
Number of queue puts
Number of queue deletes
Number of get time requests
Number of set time requests
Number of database calls
Max words used in stack
User mode time
System mode time
Wait time
Task storage high-water mark
Total number of free storage
 requests

C-4 CA-ADS Reference

C.2 Collecting selected statistics

CA-ADS Statistics Block fields: The following table lists the sets of CA-ADS
statistics that can be collected for each dialog.

Type of information Fields

IDMS-DB STATISTICS Number of pages read
Number of pages written
Number of pages requested
Number of CALC records stored with
no overflow
Number of CALC records stored with
overflow
Number of VIA records stored with
no overflow
Number of VIA records stored with
overflow
Number of records requested
Number of records current of run
unit
Number of fragments stored
Number of records relocated
Total number of locks
Number of select locks
Number of update locks

Type of information Fields

IDENTIFICATION INFORMATION CA-ADS Statistics Block
identifier
DC user identifier
DC logical terminal identifier
Dialog identifier
Date that Transaction Statistics
 Block BIND command was issued
Time that Transaction Statistics
 Block BIND command was issued
Dialog version number

Appendix C. Dialog Statistics C-5

C.2 Collecting selected statistics

Type of information Fields

STATISTICS FOR EXPLICITLY CODED
CONTROL COMMANDS

Number of DISPLAY commands
Number of DISPLAY CONTINUE
commands
Number of INVOKE commands
Number of LINK TO DIALOG
commands
Number of LINK TO PROGRAM
commands
Number of RETURN commands
Number of RETURN CONTINUE
commands
Number of TRANSFER commands
Number of LEAVE ADS commands
Number of LEAVE APPLICATION
commands
Number of ABORT commands

STATISTICS FOR IMPLICITLY
GENERATED CONTROL COMMANDS

Number of DISPLAY commands
Number of INVOKE commands
Number of LINK TO DIALOG
commands
Number of LINK TO PROGRAM
commands
Number of RETURN commands
Number of RETURN CONTINUE
commands
Number of TRANSFER commands
Number of LEAVE ADS commands
Number of LEAVE APPLICATION
commands
Number of ABORT commands

C-6 CA-ADS Reference

C.2 Collecting selected statistics

Type of information Fields

DIALOG EXECUTION STATISTICS Number of premap process
 executions
Number of response process
 executions
Number of statistics
 accumulation calls
Number of explicit scratch gets
Number of explicit scratch puts
Number of explicit scratch
 deletes
Number of WRITE PRINTER commands
Number of PUT NEW DETAIL commands
Number of PUT CURRENT DETAIL
 commands
Number of GET DETAIL commands
Size of Fixed Dialog Block (FDB)
Size of Variable Dialog Block
 (VDB)
Highest link level at which a
 dialog was
executed
Lowest link level at which a
 dialog was executed

STATISTICS FOR RECORD BUFFER
BLOCK (RBB) USAGE

Number of times RBBs put to
 scratch
Most RBB storage used (all
 dialogs)
RBB free space when most
 storage used
Least RBB storage used (all
 dialogs)
RBB free space when least
 storage used
Most RBB space acquired for a
 dialog
Least RBB space acquired for a
 dialog
Highest number of RBBs used
Lowest number of RBBs used

Appendix C. Dialog Statistics C-7

C.3 Enabling dialog statistics

C.3 Enabling dialog statistics

Dialog statistics can be collected only if task and transaction statistics collection is
enabled. Task statistics are enabled at system generation time. Transaction statistics
can be enabled at either system generation or runtime in the following manner:

■ To enable transaction statistics at system generation time, use the STATISTICS
parameter in the SYSTEM statement, specifying TASK, WRITE, and
TRANSACTION.

■ To enable transaction statistics at runtime, use the DCMT VARY STATISTICS
TRANSACTION command.

The DCMT VARY ADSO STATISTICS command is used to enable or disable dialog
statistics and to specify whether individual statistics are collected for selected dialogs
or for all dialogs, as follows:

■ DCMT VARY ADSO STATISTICS ON ALL DIALOGS enables dialog
statistics and specifies that sets of statistics are to be collected for overhead
activity and for each dialog that is executed during a CA-ADS application.

■ DCMT VARY ADSO STATISTICS ON SELECTED DIALOGS enables
dialog statistics and specifies that sets of statistics are to be collected for overhead
activity and for each selected dialog that is executed during an CA-ADS
application. One additional set of statistics is collected to accumulate statistics for
all nonselected dialogs.

■ DCMT VARY ADSO STATISTICS OFF disables the dialog statistics feature.

If no DCMT VARY ADSO STATISTICS command is issued prior to the execution of
an application, the runtime system uses the default specification established at system
generation.

C-8 CA-ADS Reference

C.4 Selecting dialogs

 C.4 Selecting dialogs

The DCMT VARY PROGRAM command is used to select or deselect dialogs for
individual statistics collection, as follows:

■ DCMT VARY PROGRAM dialog-name ADSO STATISTICS ON selects the
named dialog for individual statistics collection. At runtime, if dialog statistics are
enabled, individual statistics are collected for the dialog when it executes.

■ DCMT VARY PROGRAM dialog-name ADSO STATISTICS OFF deselects a
dialog from individual statistics collection. At runtime, if dialog statistics are
enabled in the SELECTED DIALOGS mode, individual statistics for the dialog
are not collected; however, one set of statistics is collected for all nonselected
dialogs. If dialog statistics are enabled in the ALL DIALOGS mode, individual
statistics are collected for the dialog when it executes, even if it is not selected.

If no DCMT VARY PROGRAM command with the STATISTICS parameter is issued
for a dialog prior to the execution of an application, the runtime system uses the
specification established at system generation.

The DCMT VARY ADSO STATISTICS and the DCMT VARY PROGRAM
commands can be issued in any order.

Appendix C. Dialog Statistics C-9

C.5 Setting a checkpoint interval

C.5 Setting a checkpoint interval

The DCMT VARY ADSO STATISTICS command is used to set a checkpoint
interval, which determines when the collected statistics are written to the system log,
as follows:

■ DCMT VARY ADSO STATISTICS CHECKPOINT INTERVAL
checkpoint-interval-number specifies that statistics for all dialogs are written to
the log once at every checkpoint-interval-number statistics accumulations.
Additionally, statistics are written to the log when the application terminates.
Note that CHECKPOINT INTERVAL 0 is equivalent to CHECKPOINT
INTERVAL OFF.

■ DCMT VARY ADSO STATISTICS CHECKPOINT INTERVAL OFF
specifies that statistics are written to the log only when the application terminates.

If no DCMT VARY ADSO STATISTICS command with the CHECKPOINT
INTERVAL parameter is issued prior to the execution of an application, the runtime
system uses the specification established at system generation.

C-10 CA-ADS Reference

C.6 Collecting and writing statistics

C.6 Collecting and writing statistics

At runtime, if dialog statistics are enabled, statistics for overhead activity are collected
and written to the CA-IDMS/DC or CA-IDMS/UCF (DC/UCF) system log whenever
overhead activity is performed, once at the beginning of the application and once at
the end. The transaction statistics block identifier for overhead activity is either the
application name or, for applications not defined using the application generator,
$ADS@@OH.

Dialog statistics are collected each time a dialog issues a control command. These
statistics are not written immediately to the system log, but are accumulated in
transaction and CA-ADS statistics blocks (TSBs and ASBs).

The runtime system allocates TSBs and ASBs as follows:

■ If dialog statistics are enabled in the ALL DIALOGS mode, one TSB and one
ASB are allocated for each dialog the first time the dialog becomes operative in
the application thread. The statistics block identifier for the TSB and ASB is the
dialog name.

■ If dialog statistics are enabled in the SELECTED DIALOGS mode, one TSB and
one ASB are allocated for each selected dialog the first time the dialog becomes
operative in the application thread. Additionally, one TSB and one ASB are
allocated to accumulate statistics for all nonselected dialogs; the statistics block
identifier for the additional TSB and ASB is $ADS@@AO.

Dialog statistics are written to the system log each time the number of statistics
accumulations equals the predefined checkpoint interval. Additionally, statistics are
written to the log when the application terminates.

When dialog statistics are written to the system log, only TSBs and ASBs that contain
accumulated statistics are written to the system log. The TSBs and ASBs are then
initialized, and the statistics accumulations count is reset to zero.

TSBs and ASBs are freed only when the application terminates. Note, however, that
during a pseudo-converse they may be written to scratch along with record buffer
blocks, as directed at system generation with the FAST MODE THRESHOLD and
RESOURCES parameters of the ADSO statement.

Appendix C. Dialog Statistics C-11

C.7 Statistics reporting

 C.7 Statistics reporting

DC/UCF statistics reports (SREPORTs) allow the application developer to produce
reports on dialog statistics.

Statistics collected in the CA-ADS statistics block can be reported on by using any of
the following SREPORTs, identified by report number:

■ 018— CA-ADS statistics by user id

■ 019— CA-ADS statistics by dialog and version number

■ 020— CA-ADS statistics by logical terminal id

Statistics collected in the transaction statistics block can be reported on by using any
of the following SREPORTs:

■ 011— CA-IDMS-DC transaction statistics by logical terminal id

■ 021— IDMS-DC transaction statistics by dialog and

C-12 CA-ADS Reference

C.7 Statistics reporting

SREPORTS are similar in format.

Sample SREPORT for dialog statistics: The following shows sample output
from SREPORT number 019:

 REPORT NO. H19 ADS STATISTICS BY DIALOG AND VERSION NUMBER - R15.H H9/19/99 PAGE 8

 DIALOG NAME : ADSOAFNC VERSION NUMBER: 1

 DATE : 91H43 TIME : H9:49 USER ID : SMT

 DATE BIND : 91H43 TIME BIND : H9:46 LTERM ID : LT12H11

 DISPLAY COMMAND: 21 DISPLAY CONTINU: 21 INVOKES : 3 LINK TO DIALOGS: 18

 LNKS TO PROGRAM: 18 RETURNS : H RETURN CONTINUE: H TRANSFERS : 18

 LEAVE ADS : H LEAVE APPLICATN: H ABORTS : H IMPL DISPLAYS : H

 IMPL INVOKE : H IMPL LINK DLGS : H IMPL LINK PGMS : H IMPL RETURNS : H

 IMPL RET CONT : H IMPL TRANSFERS : H IMPL LEAVE ADS : H IMPL LEAVE PGMS: H

 IMPL ABORTS : H PREMAP PROCESS : 42 RESPONSE PROCES: 21 STAT ACCUM CALL: 99

 EXPL GET SCRS : H EXPL PUT SCRS : H EXPL DEL SCRS : H WRTE PRINT REQS: H

 PUT NEW DETAILS: H PUT CUR DETAILS: H GET DETAILS : H SIZE OF FDB : 23,H8H

 SIZE OF VDB : 836 HIGHEST LNK LEV: 1 LOWEST LNK LEVL: 1 RBB PUT TO SCR : H

 RBB STG HI MARK: 3,176 RBB FREE HI : 9H8 RBB STG LOW MK : 3,176 RBB FREE LOW : 9H8

 MOST RBB ACQ : 3H4 LEAST RBB ACQ : 3H4 HICOUNT RBB USE: 1 LOCOUNT RBB USE: 1

 ____ DIALOG TOTAL ____

 DISPLAY COMMAND: 21 DISPLAY CONTINU: 21 INVOKES : 3 LINK TO DIALOGS: 18

 LNKS TO PROGRAM: 18 RETURNS : H RETURN CONTINUE: H TRANSFERS : 18

 LEAVE ADS : H LEAVE APPLICATN: H ABORTS : H IMPL DISPLAYS : H

 IMPL INVOKE : H IMPL LINK DLGS : H IMPL LINK PGMS : H IMPL RETURNS : H

 IMPL RET CONT : H IMPL TRANSFERS : H IMPL LEAVE ADS : H IMPL LEAVE PGMS: H

 IMPL ABORTS : H PREMAP PROCESS : 42 RESPONSE PROC : 21 STAT ACCUM CALL: 99

 EXPL GET SCRS : H EXPL PUT SCRS : H EXPL DEL SCRS : H WRTE PRINT REQS: H

 PUT NEW DETAILS: H PUT CUR DETAILS: H GET DETAILS : H RECORD COUNT : 1

Appendix C. Dialog Statistics C-13

C-14 CA-ADS Reference

Appendix D. Application and Dialog Utilities

D.1 Overview . D-3
D.2 ADSOBCOM . D-4

D.2.1 Standard control statements . D-4
D.2.2 Special control statements . D-5
D.2.3 SIGNON . D-5
D.2.4 COMPILE . D-6
D.2.5 DECOMPILE . D-8
D.2.6 Dialog-expression . D-10
D.2.7 JCL and commands . D-30

D.2.7.1 OS/390 JCL . D-30
D.2.7.2 VSE/ESA JCL . D-31
D.2.7.3 VM/ESA commands . D-33
D.2.7.4 BS2000/OSD JCL . D-35

D.3 ADSOBSYS . D-37
D.3.1 Control statements . D-37
D.3.2 SYSTEM statement . D-38
D.3.3 JCL and commands . D-39

D.3.3.1 OS/390 JCL . D-39
D.3.3.2 VSE/ESA JCL . D-42
D.3.3.3 VM/ESA commands . D-44
D.3.3.4 BS2000/OSD JCL . D-46

D.4 ADSOBTAT . D-48
D.4.1 Control statements . D-49
D.4.2 JCL and commands . D-51

D.4.2.1 OS/390 JCL . D-51
D.4.2.2 VSE/ESA JCL . D-52
D.4.2.3 VM/ESA commands . D-54
D.4.2.4 BS2000/OSD JCL . D-55

D.5 ADSOTATU . D-57
D.5.1 TAT update utility screen . D-58

Appendix D. Application and Dialog Utilities D-1

D-2 CA-ADS Reference

D.1 Overview

 D.1 Overview

CA-ADS provides utilities that allow the application developer to maintain applications
and dialogs. The utilities are summarized in the table below and discussed in further
detail throughout this appendix.

Summary of CA-ADS utilities

Utility Purpose

ADSOBCOM Creates, modifies, deletes, and recompiles dialogs in batch mode

ADSOBSYS Sets up system generation parameters required by ADSOBCOM

ADSOBTAT Modifies the task application table (TAT) in batch mode when an
application is migrated from one dictionary to another

ADSOTATU Modifies the task application table (TAT) online when an
application is migrated from one dictionary to another

Appendix D. Application and Dialog Utilities D-3

D.2 ADSOBCOM

 D.2 ADSOBCOM

ADSOBCOM, the batch dialog compiler, allows the application developer to add,
modify, delete, and recompile dialogs. Batch dialog recompilation is useful when
modifications are made to maps, processes, subschemas, or records that are associated
with several dialogs. There is no limit to the number of dialogs that can be processed
in a single run of ADSOBCOM.

ADSOBSYS: The ADSOBSYS utility must be run before ADSOBCOM can be run.
ADSOBSYS creates an ADSOOPTI load module that contains CA-ADS system
generation parameters for the specified CA-IDMS/DC or CA-IDMS/UCF (DC/UCF)
system. ADSOBSYS must be run once when the system is first generated, and once
each time CA-ADS system generation parameters are changed.

Dialog compiler security is in effect during execution of ADSOBCOM. Dialog
compiler security prohibits unauthorized application developers from adding,
modifying, and/or deleting dialogs.

�� For a description of dialog compiler security, see Appendix G, “Security Features.”

ADSOBCOM uses standard control statements as well as special ADSOBCOM control
statements.

D.2.1 Standard control statements

The following control statements can be used with ADSOBCOM:

ICTL: Specifies a scan for meaningful data within a specified column range. The
default specification is 1-72. The ICTL statement format is shown below:

��─┬───┬──────────────────────��

└─ ICTL = (start-column-number end-column-number) ─┘

OCTL: Specifies the number of printed lines on each page of printed ADSOBCOM
output. The default specification is 56. The OCTL statement format is shown below:

��─┬──────────────────────────────┬───��

└─ OCTL = (line-count-number) ─┘

ISEQ: Specifies sequence checking on source statements within a specified column
range. The ISEQ statement format is shown below:

��─┬───┬──────────────────────��

└─ ISEQ = (start-column-number end-column-number) ─┘

If used, the ICTL, OCTL, and ISEQ control statements must be submitted into the job
stream before the SIGNON statement.

D-4 CA-ADS Reference

D.2 ADSOBCOM

D.2.2 Special control statements

ADSOBCOM is driven by the control statements SIGNON, COMPILE, and
DECOMPILE.

 D.2.3 SIGNON

Purpose Specifies the name and any necessary password of the DC/UCF user, as
well as the dictionary in which the dialogs to be recompiled are stored.

 Syntax:

��─┬──�

└─ SIGnon ─┬──┬──

└─ USER ─┬──────┬─ user-name ─┬─────────────────────────────┬┘

├─ IS ─┤ └ PASSword ─┬────┬─ password ─┘

└─ = ──┘ ├ IS ┤

└ = ─┘

 �──�

 ────┬───────────────────────────────────────┬───────────────────────────────

└─ DICTNAME ─┬──────┬─ dictionary-name ─┘

├─ IS ─┤

└─ = ──┘

 �──┬─────────────────────────��

────┬──────────────────────────────────────┬─ . ──┘

└─ DICTNODE ───┬──────┬── node-name ───┘

├─ IS ─┤

└─ = ──┘

 Parameters

USER is user-name
Specifies the signon user.

The equals sign (=) can be used in place of IS.

Note: USER must be the first parameter specified on the SIGNON statement.

PASSword is password
Specifies, when necessary, the user's DC/UCF password.

The user name and password must be supplied in order to use ADSOBCOM when
dialog compiler level security is in effect. Additionally, security at the dialog
level may also require that the user name and password be supplied.

�� For a discussion of dialog compiler security, see Appendix G, “Security
Features.”

DICTNAME is dictionary-name
Specifies the 1- to 8-character name of the data dictionary from which the dialog
load module, process source code, record, map, and subschema definitions are
retrieved. This is the same dictionary into which the compiled dialog load module
is placed.

Appendix D. Application and Dialog Utilities D-5

D.2 ADSOBCOM

If no dictionary name is specified, ADSOBCOM uses the name of the primary
dictionary.

DICTNODE is node-name
(for DDS only) Specifies the 1- to 8-character name of the DDS node that controls
the data dictionary specified by DBNAME.

 D.2.4 COMPILE

Purpose: Either specifies the dialogs to be recompiled based on information in the
load module, or specifies the dialogs to be added, modified, or deleted, based on
information in the dialog statements that accompany the COMPILE statement.

There is no limit to the number of COMPILE statements that can be submitted to each
run of ADSOBCOM.

 Syntax:

��─── COMpile from ───�

 ┌──────────────────────┐

 �─┬─ SOUrce ──↓── dialog-expression ─┴───────────────────────────────────────�─
 │

└─ LOAD ─┬─ ALL ───

 │ ┌────────────────────────┐

└─ DIALog ─┬──────┬─ (─↓─ dialog-name-options ─┴─) ────────────
├─ IS ─┤

└─ = ──┘

─�───┬── . ─────��

 ───┬─┘

 ─┬───┬─┘

 │ ┌───────────────────────────┐ │

└─ VERsion ─┬──────┬── (─↓── version-number-options ─┴─) ─┘
├─ IS ─┤

 └─ = ─┘

Expansion of dialog-name-options

��─┬─ dialog-name ───────────────────────────────────────┬────────────────────��

├─ dialog-mask-value ─────────────────────────────────┤

├─ (low-dialog-name high-dialog-name) ─────────────┤

└─ (low-dialog-mask-value high-dialog-mask-value) ─┘

Expansion of version-number-options

��─┬─ version-number ──────────────────────────────┬──────────────────────────��

└─ (low-version-number high-version-number) ─┘

 Parameters

SOUrce dialog-expression
Specifies that dialogs to be added, modified, or deleted based on information in
the dialog expression.

Repeated dialog expressions can be used to process several dialogs. Each
expression must end with a period.

D-6 CA-ADS Reference

D.2 ADSOBCOM

See the explanation of dialog-expression on the following pages.

LOAD
Specifies that the dialogs are to be recompiled based on the information in the
dialog load modules.

ALL
Specifies that all dialogs in the dictionary load area are to be recompiled.

DIALog is dialog-name-options
Specifies the dialogs in the dictionary load area to be recompiled. See expansion
of dialog-name-options below.

VERsion is version-number-options
Specifies the version numbers of the dialogs to be recompiled. See expansion of
version-number-options below.

dialog-name
Specifies the 1 to 8-character name of a single dialog.

dialog-mask-value
Specifies any dialog with a name that matches the mask criteria.

The mask character is the asterisk (*); it matches any character. For example,
DIALOG IS (DCB*****) causes all dialogs beginning with DCB to be
recompiled.

If the mask contains fewer than eight characters, the remaining character positions
are treated as blanks.

(low-dialog-name high-dialog-name)
Specifies all dialogs within the dialog-name range (inclusive).

Note: Parentheses are needed when using a range of values.

(low-dialog-mask-value high-dialog-mask-value)
Specifies all dialogs within the dialog-mask range (inclusive).

Note: Parentheses are needed when using a range of values.

version-number
Specifies a single version number for the selected dialogs.

(low-version-number high-version-number)
Specifies all versions of the selected dialogs within the version-number range
(inclusive).

Note: Parentheses are needed when using a range of values.

The default version number is 1.

 Usage:

Considerations: ADSOBCOM does not update a dialog's program definition element
(PDE) to indicate that a new copy of the dialog exists in the load area. If a dialog is
recompiled by ADSOBCOM and then executed during a single DC/UCF run, the
application developer should update the PDE by issuing the following command:

Appendix D. Application and Dialog Utilities D-7

D.2 ADSOBCOM

DCMT VARY PROGRAM dialog-name NEW COPY

For more information on the DCMT VARY PROGRAM command, refer to CA-IDMS
System Tasks and Operator Commands.

 D.2.5 DECOMPILE

Purpose: Specifies the dialogs to be decompiled based on information in the load
module.

There is no limit to the number of DECOMPILE statements that can be submitted to
each run of ADSOBCOM.

 Syntax:

��─── DECOMpile ──�

─�──────────┬─ ALL ───

 │ ┌────────────────────────┐

└─ DIALog ─┬──────┬─ (─↓─ dialog-name-options ─┴─) ────────────
├─ IS ─┤

└─ = ──┘

─�───┬──── . ─────��

 ─┬───┬─┘

 │ ┌───────────────────────────┐ │

└─ VERsion ─┬──────┬── (─↓── version-number-options ─┴─) ─┘
├─ IS ─┤

 └─ = ─┘

Expansion of dialog-name-options

��─┬─ dialog-name ───────────────────────────────────────┬────────────────────��

├─ dialog-mask-value ─────────────────────────────────┤

├─ (low-dialog-name high-dialog-name) ─────────────┤

└─ (low-dialog-mask-value high-dialog-mask-value) ─┘

Expansion of version-number-options

��─┬─ version-number ──────────────────────────────┬──────────────────────────��

└─ (low-version-number high-version-number) ─┘

 Parameters

SOUrce dialog-expression
Specifies that dialogs to be added, modified, or deleted based on information in
the dialog expression.

Repeated dialog expressions can be used to process several dialogs. Each
expression must end with a period.

See the explanation of dialog-expression on the following pages.

D-8 CA-ADS Reference

D.2 ADSOBCOM

LOAD
Specifies that the dialogs are to be recompiled based on the information in the
dialog load modules.

ALL
Specifies that all dialogs in the dictionary load area are to be recompiled.

DIALog is dialog-name-options
Specifies the dialogs in the dictionary load area to be recompiled. See expansion
of dialog-name-options below.

VERsion is version-number-options
Specifies the version numbers of the dialogs to be recompiled. See expansion of
version-number-options below.

dialog-name

Specifies the 1- to 8-character name of a single dialog.

dialog-mask-value
Specifies any dialog with a name that matches the mask criteria.

The mask character is the asterisk (*); it matches any character. For example,
DIALOG IS (DCB*****) causes all dialogs beginning with DCB to be
recompiled.

If the mask contains fewer than eight characters, the remaining character positions
are treated as blanks.

(low-dialog-name high-dialog-name)
Specifies all dialogs within the dialog-name range (inclusive).

Note: Parentheses are needed when using a range of values.

(low-dialog-mask-value high-dialog-mask-value)
Specifies all dialogs within the dialog-mask range (inclusive).

Note: Parentheses are needed when using a range of values.

version-number
Specifies a single version number for the selected dialogs.

(low-version-number high-version-number)
Specifies all versions of the selected dialogs within the version-number range
(inclusive).

Note: Parentheses are needed when using a range of values.

The default version number is 1.

 Usage:

Considerations: ADSOBCOM does not update a dialog's program definition element
(PDE) to indicate that a new copy of the dialog exists in the load area. If a dialog is
recompiled by ADSOBCOM and then executed during a single DC/UCF run, the
application developer should update the PDE by issuing the following command:

Appendix D. Application and Dialog Utilities D-9

D.2 ADSOBCOM

DCMT VARY PROGRAM dialog-name NEW COPY

For more information on the DCMT VARY PROGRAM command, refer to CA-IDMS
System Tasks and Operator Commands.

 D.2.6 Dialog-expression

Purpose: Dialog-expression is used to specify those dialogs which are to be added,
modified, and deleted.

 Syntax:

��──┬─┬──────────┬─── DIAlog ────┬──────┬──── dialog-name ──────────────────┬─�

│ ├─ ADD ────┤ ├─ IS ─┤ │

│ └─ DELete ─┘ └─ = -─┘ │

└ MODify DIAlog dialog-name-options ┬──────────────────────────────────┬┘

└ VERsion ┬─────┬ version#-options ┘

├ IS ─┤

└ = -─┘

 �──┬──┬──────────────────────────────�

└─ VERsion -─┬──────┬── version-number ────┘

├─ IS ─┤

 └─ = ─┘

 �──┬─────────────────────────────────────┬───────────────────────────────────�

└─ MAInline ───┬──────┬────┬─ YES ─┬─┘

├─ IS ─┤ └─ NO ← ─┘

 └─ = ─┘

 �──┬───�─

└─────┬──────────┬─────── SUBschema ───┬──────┬──── subschema-name ───────

├─ ADD ────┤ ├─ IS ─┤

├─ MODify ─┤ └─ = -─┘

└─ DELete ─┘

─�──┬─�

 -─┬───┬─┘

└─ SCHema ─┬────┬─ schema-name ─┬───────────────────────────────────┬─┘

├ IS ┤ └─ VERsion ─┬────┬─ version-number ─┘

└ = ─┘ ├ IS ┤

└ = ─┘

 �─┬──┬───────�

└─┬──────────┬─ ACCess MODule (AM) ─┬──────┬── access-module-name ─┘

├─ ADD ────┤ ├─ IS ─┤

├─ MODify ─┤ └─ = -─┘

└─ DELete ─┘

 �─┬──�─

 └┬──────────┬──

├─ ADD ────┤

├─ MODify ─┤

└─ DELete ─┘

D-10 CA-ADS Reference

D.2 ADSOBCOM

─�──┬─�

─┬──────────┬─ MAP ─┬──────┬─ map-name ─┬───────────────────────────────┬┘

└─ ONLine ─┘ ├─ IS ─┤ └─ version ─┬──────┬─ version# ─┘

└─ = -─┘ ├─ IS ─┤

└─ = -─┘

 �─┬──�─

 └┬──────────┬──

├─ ADD ────┤

├─ MODify ─┤

└─ DELete ─┘

─�──�─

─── INput ─┬──┬─

└─ MAPname ─┬─ IS ─┬─ map-name ┬──────────────────────────────┬┘

│ │ └ version ─┬──────┬─ version# ─┘

└─ = -─┘ ├─ IS ─┤

└─ = -─┘

─�──┬─�

 ┬────────────────────────────────────┬┬──────────────────────────────────┬┘

└─ FILEname ─┬────┬─ run-time-label ─┘└─ SUSfile ─┬────┬─ suspense-label ┘

├ IS ┤ ├ IS ┤

└ = ─┘ └ = ─┘

 �─┬──�─

 └┬──────────┬──

├─ ADD ────┤

├─ MODify ─┤

└─ DELete ─┘

─�──�─

─── OUTput ─┬───┬─

└─ MAPname ─┬─ IS ─┬ map-name ┬──────────────────────────────┬┘

│ │ └ version ─┬──────┬─ version# ─┘

└─ = -─┘ ├─ IS ─┤

└─ = -─┘

─�──┬─────────────────────────────────�

 ─┬──────────────────────────────────────┬─┘

└─ FILEname ─┬──────┬─ run-time-label ─┘

├─ IS ─┤

└─ = -─┘

 �─┬──────────────────────────────────┬───────────────────────────────────────�

└─ AUTostatus ─┬──────┬──┬─ Yes ─┬─┘

├─ IS ─┤ └─ No -─┘

└─ = -─┘

 �─┬──�─

└─ STAtus ─┬───────────────────────────┬─┬──────┬─ record-name ────────────

└─ DEFinition ─┬──────────┬─┘ ├─ IS ─┤

└─ RECord ─┘ └─ = -─┘

─�──┬─────────────────────────────────�

 ─┬──────────────────────────────────────┬─┘

└─ VERsion ─┬──────┬─ version-number -─┘

├─ IS ─┤

└─ = -─┘

Appendix D. Application and Dialog Utilities D-11

D.2 ADSOBCOM

 �─┬───┬────────────────────────────�

└─ AUTO ─┬───────────┬──┬──────┬──┬─ Yes ← ─┬─┘

└─ DISPlay ─┘ ├─ IS ─┤ └─ No ────┘

└─ = -─┘

 �─┬──┬─────────────────────────────────�

└─ PAGing MODE ─┬──────┬──┬─ UPDate ← ─┬─┘

├─ IS ─┤ └─ BROwse ───┘

└─ = -─┘

 �─┬──────────────────────────────────┬───────────────────────────────────────�

└─ BACKpage ─┬──────┬──┬─ Yes ← ─┬─┘

├─ IS ─┤ └─ No ────┘

└─ = -─┘

 �─┬──┬─────────────────────────────────�

└─ PAGing TYPE ─┬──────┬──┬─ Nowait ← ─┬─┘

├─ IS ─┤ ├─ Return ───┤

└─ = -─┘ └─ Wait ─────┘

 �─┬────────────────────────────────────┬─────────────────────────────────────�

└─ ACTivity log ─┬──────┬──┬─ Yes ─┬─┘

├─ IS ─┤ └─ No -─┘

└─ = -─┘

 �─┬──┬─────────────────────────────�

└─ SYMbol ─┬─────────┬──┬──────┬──┬─ Yes -─┬─┘

└─ TABle ─┘ ├─ IS ─┤ └─ No ← ─┘

└─ = -─┘

 �─┬───┬────────────────────────�

└─ DIAGnostic ─┬─────────┬──┬──────┬──┬─ Yes ← ─┬─┘

└─ TABle ─┘ ├─ IS ─┤ └─ No ────┘

└─ = -─┘

 �─┬───┬────────────────────────────�

└─ MESsage PREfix ─┬──────┬──┬─ prefix ─────┬─┘

├─ IS ─┤ └─ DEfault ← -─┘

└─ = -─┘

 �─┬───┬────────────────────────────────�

└─ COBol ─┬────────┬──┬──────┬──┬─ Yes ─┬─┘

└─ MOVe ─┘ ├─ IS ─┤ └─ No -─┘

└─ = -─┘

 �─┬───┬────────────────────────────�

└┬─ ENTRY POINT ─┬─┬──────┬──┬─ Premap ← -─┬──┘

└─ EP ──────────┘ ├─ IS ─┤ └─ Map ───────┘

└─ = -─┘

 �─┬──┬─────────────────────────────────�

└─ RETrieval LOCKing ─┬────┬─┬─ Yes ← ─┬─┘

├ IS ┤ └─ No ────┘

└ = ─┘

 �─┬──┬─�

└─── SQL CHEck SYNtax ─┬─ EXTended ← ─┬──────────────────────────────────┘

├─ SQL89 ──────┤

└─ FIPS ───────┘

D-12 CA-ADS Reference

D.2 ADSOBCOM

 �─┬─────────────────────────────────────┬────────────────────────────────────�

└─── SQL ─── DATe ─┬──────┬─┬─ ISO ─┬─┘

├─ IS ─┤ ├─ USA ─┤

└─ = -─┘ ├─ EUR ─┤

└─ JIS ─┘

 �─┬─────────────────────────────────────┬────────────────────────────────────�

└─── SQL ─── TIMe ─┬──────┬─┬─ ISO ─┬─┘

├─ IS ─┤ ├─ USA ─┤

└─ = -─┘ ├─ EUR ─┤

└─ JIS ─┘

 �─┬───┬────────�

│ ┌───┐ │

└─↓─┬────────┬ SQL TABle ┬────┬ table-name ─┬─────────────────┬─┴─┘

├ ADD ───┤ ├ IS ┤ └─ table-options ─┘
├ MODify ┤ └ = ─┘

└ DELete ┘

 �─┬───┬──────�

 │ ┌──┐ │

└─↓─┬──────────┬─ RECord ─┬──────┬─ record-name record-options -─┴──┘
├─ ADD ────┤ ├─ IS ─┤

├─ MODify ─┤ └─ = -─┘

└─ DELete ─┘

 �─┬──�─

└┬──────────┬─ PREmap ─┬──────────────────────┬─┬──────┬───────────────────

├─ ADD ────┤ └─ PROcess ─┬────────┬─┘ ├─ IS ─┤

├─ MODify ─┤ └─ NAMe ─┘ └─ = -─┘

└─ DELete ─┘

─�──┬─────────────�

─── process-name ───┬──────────────────────────────────────┬──┘

└─ VERsion ─┬──────┬─ version-number -─┘

├─ IS ─┤

└─ = -─┘

 �─┬──�─

└┬──────────┬─ DECLaration ─┬──────────────────────┬─┬──────┬──────────────

├─ ADD ────┤ └─ PROcess ─┬────────┬─┘ ├─ IS ─┤

├─ MODify ─┤ └─ NAMe ─┘ └─ = -─┘

└─ DELete ─┘

─�──┬─────────────�

─── process-name ───┬──────────────────────────────────────┬──┘

└─ VERsion ─┬──────┬─ version-number -─┘

├─ IS ─┤

└─ = -─┘

 �─┬──┬───────────────────────��

│ ┌──┐ │

└─↓──┬──────────┬─ RESponse ── response-options ─┴─┘
├─ ADD ────┤

├─ MODify ─┤

└─ DELete ─┘

Expansion of response-options

Appendix D. Application and Dialog Utilities D-13

D.2 ADSOBCOM

 ��─┬──────────┬─ RESponse ─┬──────────────────────┬─┬──────┬─ process-name ──�

├─ ADD ────┤ └─ PROcess ─┬────────┬─┘ ├─ IS ─┤

├─ MODify ─┤ └─ NAMe ─┘ └─ = ──┘

└─ DELete ─┘

 �─┬──────────────────────────────────────┬─┬─────────────────────────────┬───�

└─ VERsion ─┬──────┬─ version-number ──┘ └─ DEFault ─┬──────┬┬─ Yes ──┬┘

├─ IS ─┤ ├─ IS ─┤└─ No ← ─┘

└─ = ──┘ └─ = ──┘

 �─┬──┬─�

 │ ┌───┐│

└─↓─┬ CONtrol KEY ─┬────┬─ key ─┬────────────────┬─────────────────────┬┴┘

│ ├ IS ┤ └─ FROm old-key ─┘ │

│ └ = ─┘ │

├ RESponse ─┬──────────────────┬─┬────┬─ value ─┬────────────────┬─┤

│ └ FIELD ─┬───────┬─┘ ├ IS ┤ └ FROm old-value ┘ │

│ └ VALue ┘ └ = ─┘ │

├─ BATch CONtrol EVENT ─┬─┬────┬─ event ───────────────────────────┘

└─ BCE ─────────────────┘ ├ IS ┤

└ = ─┘

 �─┬───┬──────────────────────────────��

└─ EXEc ON EDIT ERRors ─┬──────┬─┬─ Yes ──┬─┘

├─ IS ─┤ └─ No ← ─┘

└─ = ──┘

Expansion of table-options

��──┬───────────────────────────────────┬┬────────────────────────┬───────────��

└─ SCHema ─┬────┬─ sql-schema-name ─┘│ ┌────────────────────┐ │

├ IS ┤ └─↓─┬─┬─ NEW copy ─┬─┬─┴─┘

└ = ─┘ │ └─ NC ───────┘ │

└─┬─ WORk ─┬─────┘

└─ WK ───┘

Expansion of record-options

��──┬───────────────────────────────────┬┬────────────────────────┬───────────��

└─ VERsion ─┬────┬─ version-number ─┘│ ┌────────────────────┐ │

├ IS ┤ └─↓─┬─┬─ NEW copy ─┬─┬─┴─┘

└ = ─┘ │ └─ NC ───────┘ │

└─┬─ WORk ─┬─────┘

└─ WK ───┘

Expansion of version#-options

��─┬─ version-number ──────────────────────────────┬──────────────────────────��

└─ (low-version-number high-version-number) ─┘

 Parameters

ADD
Specifies that a dialog is to be added to the data dictionary.

ADD is the default if the named dialog does not exist in the data dictionary.

MODify
Specifies that an existing dialog is to be modified.

MODIFY is the default if the named dialog exists in the data dictionary.

D-14 CA-ADS Reference

D.2 ADSOBCOM

DELete
Specifies that an existing dialog is to be deleted.

When the action is DELETE, only the dialog name and version number can be
specified in the dialog expression.

DIAlog is dialog-name
Specifies the 1- to 8-character name of the dialog being added, modified, or
deleted.

The dialog name must begin with an alphabetic or national (@, #, and $) character
and cannot contain embedded blanks.

The equals sign (=) can be used in place of IS.

VERsion is version-number
Specifies the version number (in the range 1 through 9999) of the dialog being
added, modified, or deleted.

The default version number is 1.

The equals sign (=) can be used in place of IS.

MAInline is Yes/No
Specifies whether the dialog is a mainline dialog.

At runtime, the dialog that executes first in a series of dialogs that make up an
application must be a mainline dialog. If a dialog function is initiated by an
application task code, the dialog associated with the function must be a mainline
dialog.

�� For more information on mainline dialogs, see Chapter 15, “Control
Commands.”

No is the default when neither Yes or No is specified.

ADD
Specifies that the subschema specification is to be added.

ADD is the default if no subschema is associated with the dialog.

MODify
Specifies that the existing subschema specification is to be replaced by a new
subschema specification.

MODIFY is the default if a subschema is associated with the dialog.

DELete
Specifies that the subschema specification is to be deleted.

If the action is DELETE, the SCHEMA clause cannot be specified.

SUBschema is subschema-name
Specifies the 1- to 8-character name of the subschema associated with the dialog.

The equals sign (=) can be used in place of IS.

Appendix D. Application and Dialog Utilities D-15

D.2 ADSOBCOM

The specified subschema must be defined in the data dictionary. If no subschema
is specified for a dialog, the dialog cannot perform database access.

SCHema is schema-name
Specifies the 1- to 8-character name of the schema.

A schema name must be specified if the named subschema is associated with
more than one schema or version of a schema. If the named subschema is
associated with only one schema and version, SCHEMA defaults to the name of
that schema.

The equals sign (=) can be used in place of IS.

VERsion is version-number
Specifies the version number (in the range 1 through 9999) of the named schema.

The equals sign (=) can be used in place of IS.

If no version number is specified, VERSION defaults to the version of the named
schema that was defined most recently.

ADD
Specifies that the access module specification is to be added.

MODify
Specifies that the existing access module specification is to be replaced by a new
access module specification.

DELete
Specifies that the access module specification is to be cleared to spaces.

ACCess MODule
Sets the access module name which is used at runtime to satisfy the IDMS/DB
request of the dialog.

(AM) is access-module-name
Specifies the 1- to 8-character name of the access module associated with the
current dialog.

The dialog can override this specification at runtime by issuing a SET ACCESS
MODULE statement.

When the access module name is not specified, the name defaults to the dialog
name.

�� For more information about specifying access modules, see 3.3.4, “Database
Specifications screen.”

ADD
Specifies that a map specification is to be added to the dialog.

ADD is the default if no map of the type specified (online, input, or output) is
associated with the dialog.

MODify
Specifies that the existing map specification is to be replaced by a new map
specification.

D-16 CA-ADS Reference

D.2 ADSOBCOM

MODIFY is the default if a map of the type specified (online, input, or output) is
already associated with the dialog.

DELete
Specifies that the map definition is to be dissociated from the dialog.

If DELETE is specified, the version number of the MAPNAME clause cannot be
specified.

ONLine/INput/OUTput
Specifies the type of map.

ONLINE is the default when no other map type is specified.

A dialog associated with an online map cannot be associated with an input or
output file map. A dialog can be associated with both an input and an output file
map by coding multiple ADD ... MAPNAME clauses. A dialog not associated
with a map is called a mapless dialog and can be executed in both batch and
online environments.

MAPname is map-name
Specifies the 1- to 8-character name of the map associated with the dialog.

The specified map must be defined in the data dictionary; however, the map load
module does not have to exist. If the dialog has no map specification, only a
premap process (not a response process) can be associated with the dialog.

VERsion is version-number
Specifies the version number (in the range 1 through 9999) of the named map.

The equals sign (=) can be used in place of IS.

If no version number is specified and the map is being added to a dialog, or the
dialog is being associated with a different map, the version defaults to 1.
Otherwise, the version number defaults to the version of the map currently
associated with the dialog.

FILEname is runtime-label
(Batch only) Specifies the OS/390 ddname (VSE/ESA filename, BS2000/OSD
linkname, VM/ESA ddname) of the input or output file added or modified.

The equals sign (=) can be used in place of IS.

The runtime label must be specified either during dialog definition or at runtime.

The runtime control statement overrides the default specified during dialog
definition.

SUSfile is suspense-label
(Batch only) Specifies the OS/390 ddname (VSE/ESA filename, BS2000/OSD
linkname, VM/ESA ddname) of the suspense file for input file maps only.

The equals sign (=) can be used in place of IS.

If a suspense file is maintained for the dialog at runtime, the label must be
specified either during dialog definition or at runtime. The runtime control
statement overrides the default specified during dialog definition.

Appendix D. Application and Dialog Utilities D-17

D.2 ADSOBCOM

AUTostatus is Yes/No
Specifies whether the autostatus facility is used when the current dialog executes.

The default setting corresponds to the autostatus specification defined at DC/UCF
system generation. If autostatus is defined as optional, the application developer
can override the initial setting. If autostatus is defined as mandatory, the initial
setting cannot be changed.

�� For a discussion of the autostatus facility, see Chapter 10, “Error Handling.”

STAtus DEFinition RECord is record-name
Specifies the 1 to 32-character name of the status definition record.

The specified record must be defined in the data dictionary. If no record name is
specified, STATUS DEFINITION RECORD defaults to the name of the status
definition record defined at DC/UCF system generation.

�� For more information on status definition records, see Chapter 10, “Error
Handling.”

VERsion is version-number
Specifies the version number (in the range 1 through 9999) of the named status
definition record.

If a version number is not specified, VERSION defaults to the system default
version number, as specified in the OOAK record at system generation.

If no system default version is specified in the OOAK record, VERSION defaults
to 1.

The equals sign (=) can be used in place of IS.

AUTO DISPlay is Yes/No
Specifies whether the first page of pageable map is displayed automatically.

A DISPLAY statement must be coded in the dialog's premap process to display
the first page.

YES is the default when neither YES or NO is specified.

PAGing MODE is UPDate/BROwse
Specifies whether the user can modify data fields on a map during a map paging
session.

�� For more information, see Chapter 17, “Map Commands.”

UPDATE is the default setting for the paging mode option.

BACKpage is Yes/No
Specifies whether the user can page backward in a map paging session.

�� For more information, see Chapter 17, “Map Commands.”

YES is the default setting for the backpage option.

D-18 CA-ADS Reference

D.2 ADSOBCOM

PAGing TYPE is Nowait/Return/Wait
Specifies the method used to determine the runtime flow of control when the user
presses a control key during a map paging session.

�� For more information, see Chapter 17, “Map Commands.”

NOWAIT is the default setting for the paging type option.

These three paging session dialog options can be specified only if the dialog is
associated with a pageable map.

The following combination of paging session dialog options cannot be specified:
PAGING MODE IS UPDATE, BACKPAGE IS NO, and PAGING TYPE IS
NOWAIT.

ACTivity log is Yes/No
Specifies whether the dialog uses the activity logging facility.

This facility documents all potential database activity by a dialog, based on the
database commands issued explicitly or implicitly by the dialog's processes.

�� For more information on activity logging, see Appendix E, “Activity Logging
for a CA-ADS Dialog.”

The default setting for the activity logging option is defined at DC/UCF system
generation.

SYMbol TABle is Yes/No
Specifies whether a symbol table is created for a dialog.

A symbol table facilitates the use of element names and process line numbers by
the online debugger.

�� For more information on the online debugger:

■ See Appendix H, “Debugging a CA-ADS Dialog”

■ Refer to CA-IDMS Online Debugger

NO is the default setting for the symbol table option.

DIAGnostic TABle is Yes/No
Specifies whether the dialog load
 module contains diagnostic tables (line number tables and offset tables).

Diagnostic tables facilitate the testing and debugging of a dialog. If a process
aborts, diagnostic tables are used to display the process command in error on the
Dialog Abort Information screen. The ADSORPTS utility uses diagnostic tables
to format the dialog report for easy reference.

YES is the default setting for the diagnostic table option.

The setting must be YES if the symbol table setting is YES. Also, during the
testing of a dialog, the diagnostic table setting should be YES.

Appendix D. Application and Dialog Utilities D-19

D.2 ADSOBCOM

Once a dialog has been tested thoroughly, the diagnostic table setting should be
NO and the dialog recompiled if dialog load module size is a consideration. The
size of a large dialog load module can be reduced significantly by compiling the
dialog without diagnostic tables.

MESSage PREfix is
Clause introducing a message prefix for a dialog.

The equals sign (=) can be used in place of IS.

prefix
Specifies a user-supplied 2-character alphanumeric message prefix for the dialog.

DEfault
Specifies that the dialog uses the default message prefix.

DEFAULT is the default setting when the message prefix is not specified.

COBol MOVe is Yes/No
Specifies whether the rules of COBOL or CA-ADS are used in the conversion
between data types and in the rounding or truncation of the results of arithmetic
and assignment commands.

�� For more information, see:

■ Chapter 5, “Introduction to Process Language”

■ Chapter 3, “CA-ADS Dialog Compiler (ADSC)”

The default setting for the COBOL MOVE option is defined at DC/UCF system
generation. The system generation default is NO.

ENTRY POINT is
Clause introducing the entry point into the dialog when the dialog begins
execution at runtime.

EP can be used in place of ENTRY POINT; the equals sign (=) can be used in
place of IS.

Premap
Specifies that the dialog begins with its premap process.

PREMAP is the default when no other entry point is specified.

Map
Specifies that the dialog begins with its first mapping operation (mapout for online
dialogs, mapin for batch dialogs).

Regardless of the specification, a dialog without an online map or batch input file
map begins with its premap process. A dialog without a premap process begins
with its first mapping operation.

RETrieval LOCKing is Yes/No
Specifies whether or not the dialog will cause record locks to be held for database
records.

D-20 CA-ADS Reference

D.2 ADSOBCOM

YES, the default, specifies that database record retrieval locks will be held on
behalf of run units started by the dialog.

�� More information about record retrieval locks can be found in Chapter 16,
“Database Access Commands.”

SQL CHEck SYNtax
Specifies the SQL standard you are enforcing. The default is CA-IDMS extended
ANSI-standard SQL. CA-ADS supports the following SQL standards:

 ■ EXTended

 ■ SQL89

 ■ FIPS

�� For more information about SQL standards, refer to the CA-IDMS SQL Reference.

SQL DATe is
Specifies the external date representation format. The date format can be one of
the following:

■ ISO specifies the International Standards Organization standard

■ USA specifies the IBM USA standard

■ EUR specifies the IBM European standard

■ JIS specifies the Japanese Industrial Standard Christian Era standard

SQL TIMe is
Specifies the external time representation format. The time format can be one of
the following:

■ ISO specifies the International Standards Organization standard

■ USA specifies the IBM USA standard

■ EUR specifies the IBM European standard

■ JIS specifies the Japanese Industrial Standard Christian Era standard

�� For more information on date/time representations, refer to the CA-IDMS SQL
Reference.

ADD
Specifies that the SQL table specification is to be added.

MODify
Specifies that the existing SQL table specification is to be replaced by a new SQL
table specification.

DELete
Specifies that the SQL table specification is to be cleared to spaces.

Appendix D. Application and Dialog Utilities D-21

D.2 ADSOBCOM

SQL TABle is table-name
Specifies the name of the SQL table assigned the new copy attribute and/or the
work record attribute.

table-options
See expansion of table-options below.

ADD
Specifies that a new copy/work record specification is to be added to the dialog.

ADD is the default if the named new copy/work record is not associated with the
dialog.

MODify
Specifies that a new copy/work record specification of a dialog is to be modified.

MODIFY is the default if the named new copy/work record is already associated
with the dialog.

DELete
Specifies that a new copy/work record specification of a dialog is to be deleted.

If the action is DELETE, the VERSION specification is optional, and the NEW
COPY and WORK specifications cannot be included.

RECord is record-name record-options
Specifies the name of the record assigned the new copy attribute and/or the work
record attribute.

See expansion of record-options below.

ADD
Specifies that a premap process is to be added to the dialog.

ADD is the default if no premap process is associated with the dialog.

MODify
Specifies that a new premap process is to replace the existing premap process.

MODIFY is the default if a premap process is already associated with the dialog.

DELete
Specifies that the premap process is to be deleted from the dialog.

If the action is DELETE, the version number cannot be specified.

PREmap PROcess NAMe is process-name
Specifies the 1- to 32-character name of the process source module associated
with the dialog as a premap process.

PROCESS and NAME are optional keywords; the equals sign may be used in
place of IS.

Note: The specified process source module must exist in the data dictionary.

VERsion is version-number
Specifies the version number (in the range 1 through 9999) of the named process
source module.

D-22 CA-ADS Reference

D.2 ADSOBCOM

The equals sign (=) may be used in place of IS.

The default version number is the system default version number, as specified in
the OOAK record at system generation. If no system default version number is
specified in the OOAK record, the default version number is 1.

ADD
Specifies that a premap process is to be added to the dialog.

ADD is the default if no premap process is associated with the dialog.

MODify
Specifies that a new premap process is to replace the existing premap process.

MODIFY is the default if a premap process is already associated with the dialog.

DELete
Specifies that the premap process is to be deleted from the dialog.

If the action is DELETE, the version number cannot be specified.

DECLaration PROcess NAMe is process-name
Specifies the 1- to 32-character name of the process source module associated
with the dialog as a premap process.

PROCESS and NAME are optional keywords; the equals sign may be used in
place of IS.

Note: The specified process source module must exist in the data dictionary.

VERsion is version-number
Specifies the version number (in the range 1 through 9999) of the named process
source module.

The equals sign (=) may be used in place of IS.

The default version number is the system default version number, as specified in
the OOAK record at system generation. If no system default version number is
specified in the OOAK record, the default version number is 1.

ADD
Specifies that a response process is to be added to the dialog.

ADD is the default if the named response process is not already associated with
the dialog.

ADD can be used to define duplicate response processes, in which the same
response process is associated with several control keys and/or response field
values. In the example shown below, response process RP1 is associated with
control keys PF1, PF2, and PF3, and with response field values ADD and MOD:

ADD RESPONSE PROCESS RP1 CONTROL KEY PF1 RES VALUE ADD

ADD RESPONSE PROCESS RP1 CONTROL KEY PF2 RES VALUE MOD

ADD RESPONSE PROCESS RP1 CONTROL KEY PF3

Appendix D. Application and Dialog Utilities D-23

D.2 ADSOBCOM

MODify
Specifies that a response process of the dialog is to be modified.

MODIFY is the default if the named response process is already associated with
the dialog.

In the example shown below, the control key specification for nonduplicate
response process RP1 is modified to PF2:

MODIFY RESPONSE PROCESS RP1 CONTROL KEY PF2

To modify a duplicate response process, the application developer must specify
which occurrence of the duplicate response process is being modified.

To modify the control key associated with the response process, the application
developer specifies the FROM parameter of the CONTROL KEY specification. In
the example shown below, the control key ENTER is changed to PA1 for
duplicate response process RP1:

MODIFY RESPONSE PROCESS RP1 CONTROL KEY PA1 FROM ENTER

To modify the response field value associated with the response process, the
application developer specifies the FROM parameter of the RESPONSE FIELD
VALUE specification. In the example shown below, the response field value
MOD is changed to ADD for duplicate response process RP1:

MODIFY RESPONSE PROCESS RP1 RES VALUE ADD FROM MOD

To modify the EXECUTE ON EDIT ERRORS specification associated with the
response process, the application developer specifies either the CONTROL KEY
or RESPONSE FIELD VALUE parameter. In the example shown below, the
EXECUTE ON EDIT ERRORS specification is set to YES for the occurrence of
duplicate response process RP1 that is associated with the ENTER key:

MODIFY RESPONSE PROCESS RP1 CONTROL KEY ENTER

EXECUTE ON EDIT ERRORS YES

DELete
Specifies that a response process of the dialog is to be deleted.

If the action is DELETE, the version number is optional and the EXEC ON EDIT
ERRORS specifications cannot be included.

An occurrence of a duplicate response process is deleted by specifying the
CONTROL KEY or RESPONSE FIELD VALUE parameter. The example shown
below deletes the occurrence of duplicate response process RP1 that is associated
with the response field value ADD:

DELETE RESPONSE PROCESS RP1 RES VALUE ADD

RESponse response-options
See expansion of response-options below.

Expansion of response-options

RESponse PROcess NAMe
Specifies the 1- to 32-character name of the process source module associated
with the dialog as a response process.

Note: The specified source module must exist in the data dictionary.

D-24 CA-ADS Reference

D.2 ADSOBCOM

VERsion is version-number
Specifies the version number (in the range 1 through 9999) of the named process
source module.

The default version number is the system default version number, as specified in
the OOAK record at system generation. If no system default version number is
specified in the OOAK record, the default version number is 1.

The equals sign (=) may be used in place of IS.

DEFault is Yes/No
Specifies whether the response process defined is the optional default response
process of the dialog.

At runtime, after a mapin operation, the runtime system executes the default
response process if no response process can be selected based on control event or
response field values.

NO is the default specification.

If DEFAULT is NO, a control key, a response field value, a response field value,
or a batch control event for the response process must be specified. If DEFAULT
is YES, these specifications are optional.

CONtrol KEY is key
Specifies a user-defined control key that initiates the response process at runtime.

The equals sign (=) can be used in place of IS.

Key can also be specified to identify an occurrence of a duplicate response
process, as described under ADD/MODIFY/DELETE RESPONSE PROCESS
above.

Valid control key specifications are ENTER, CLEAR, PA1 through PA3, PF1
through PF24, FWD, BWD, and HDR. FWD, BWD, and HDR can be specified
only if the dialog is associated with a pageable map. LPEN can be specified as a
control key if the use of light pens is supported by the installation.

CLEAR, PA1, PA2, and PA3 do not transmit data; that is, input is not mapped in
when these keys are pressed at runtime. The FWD, BWD, and HDR control keys
are associated with pageable maps. FWD and BWD are synonymous with the
keyboard control keys for paging forward and backward, respectively. If FWD
and BWD are specified and the keys defined for paging forward and backward are
changed, the dialog does not have to be recompiled.

HDR is not associated with any keyboard control key; rather, conditions
encountered during a map paging session cause a response process associated with
this control key value to be initiated.

�� For more information on the effect of HDR on the runtime flow of control, see
in Chapter 4, “CA-ADS Runtime System.”

Appendix D. Application and Dialog Utilities D-25

D.2 ADSOBCOM

FROm old-key
Identifies the occurrence of a duplicate response process whose associated control
key specification is being modified, as described under ADD/MODIFY/DELETE
RESPONSE PROCESS above.

RESponse FIEld VALue is value
Specifies a response name associated with the response process.

Value can also be specified to identify an occurrence of a duplicate response
process, as described under ADD/MODIFY/DELETE RESPONSE PROCESS
above.

The equals sign (=) may be used in place of IS.

When a control key value or a response field value of a response process needs to
be dissociated from the response, a blank value (' ') can be used, as in the
following example:

MOD RES PRO response-name VER 1 RES VALUE ' '

FROm old-value
Identifies the occurrence of a duplicate response process whose associated
response field value specification is being modified, as described under
ADD/MODIFY/DELETE RESPONSE PROCESS above.

BATch CONtrol EVENT is event
Specifies a batch control event that initiates the response process at runtime.

BCE can be used in place of BATCH CONTROL EVENT; the equals sign (=)
can be used in place of IS.

Valid batch control events

■ EOF indicates that the most recent input file read operation resulted in an
end-of-file condition.

■ IOERR indicates that the most recent input file read operation resulted in physical
input-error condition. In CA-ADS/Batch, output errors cause the runtime system
to terminate the application.

Batch control events can be specified only for batch dialogs. Control keys can be
specified only for online dialogs.

EXEc ON EDIt ERRors is
Introduces whether processing continues if automatic editing encounters map input
errors.

The equals sign (=) can be used in place of IS.

Yes
Specifies that the response process executes even if the map contains input errors.

No
Specifies that the response process is not executed if the map contains input
errors. The user must correct all map fields that are in error before processing
continues.

D-26 CA-ADS Reference

D.2 ADSOBCOM

NO is the default when neither YES or NO is specified.

Expansion of table-options

SCHema is sql-schema-name
Specifies the schema containing the SQL table.

The equals sign (=) can be used in place of IS.

NEW copy
Specifies that the table is assigned the new copy attribute.

Records with the new copy attribute are allocated new table buffers when the
dialog executes at runtime.

NC can be used in place of NEW COPY.

WORk
Specifies that the table is assigned the work attribute.

Records with the work table attribute are available to the dialog as working
storage at runtime.

WK can be used in place of WORK.

If no attribute is specified for the named table, WORK is assigned as the default.
If NEW COPY is specified for the table, WORK is not automatically assigned; the
application developer must explicitly specify the work table attribute.

�� For more information on the new copy and work attributes, see Chapter 3,
“CA-ADS Dialog Compiler (ADSC).”

Expansion of record-options

VERsion is version-number
Specifies the version number (in the range 1 through 9999) of the named record.

If a version number is not specified, VERSION defaults to the system default
version number, as specified in the OOAK record at system generation.

If no system default version number is specified in the OOAK record, VERSION
defaults to 1.

The equals sign (=) can be used in place of IS.

NEW copy
Specifies that the record is assigned the new copy attribute.

Records with the new copy attribute are allocated new record buffers when the
dialog executes at runtime.

NC can be used in place of NEW COPY.

WORk
Specifies that the record is assigned the work attribute.

Records with the work record attribute are available to the dialog as working
storage at runtime.

Appendix D. Application and Dialog Utilities D-27

D.2 ADSOBCOM

WK can be used in place of WORK.

If no attribute is specified for the named record, WORK is assigned as the default.
If NEW COPY is specified for the record, WORK is not automatically assigned;
the application developer must explicitly specify the work record attribute.

�� For more information on the new copy and work attributes, see Chapter 3,
“CA-ADS Dialog Compiler (ADSC).”

Expansion of version#-options

version-number
Specifies a single version number for the selected dialogs.

low-version-number high-version-number
Specifies all versions of the selected dialogs within the version-number range
(inclusive).

The default version number is 1.

 Usage:

 Considerations

■ The DIALOG clause must be the first clause of a dialog expression.

■ The MAINLINE, SUBSCHEMA, MAPNAME, AUTOSTATUS, STATUS
DEFINITION RECORD, ACTIVITY LOG, SYMBOL TABLE, DIAGNOSTIC
TABLE, MESSAGE PREFIX, COBOL MOVE, ENTRY POINT, and
RETRIEVAL LOCKING clauses can appear in any order, but must precede the
first RECORD clause.

■ The PAGING MODE, BACKPAGE, and PAGING TYPE clauses can be specified
only if the dialog's map is pageable. These clauses can appear in any order, but
must follow the MAPNAME clause and precede the first RECORD clause.

■ All RECORD clauses must precede the first PROCESS clause.

■ PREMAP PROCESS and RESPONSE PROCESS clauses can appear in any order,
provided that the above requirements are met.

Examples: Example 1: Recompiling all dialogs

All dialogs in the load area are recompiled:

COMPILE FROM LOAD ALL.

Example 2: Recompiling dialogs by version number

All dialogs with version number 2 and version numbers 5 through 8 are recompiled:

COMPILE FROM LOAD ALL VERSION (2 (5 8)).

Example 3: Recompiling dialogs by name

D-28 CA-ADS Reference

D.2 ADSOBCOM

All dialogs with names that begin with C and that have the letters D and R in the
fourth and fifth positions are recompiled:

COMPILE FROM LOAD DIALOG (C__DR___).

Example 4: Recompiling dialogs within a specified range

Dialogs QWERT001 through ZZZZZZZZ are recompiled:

COMPILE FROM LOAD DIALOG ((QWERTHH1 ZZZZZZZZ)).

Example 5: Recompiling an added dialog

The dialog SXADIAL is added and compiled:

COMPILE FROM SOURCE

ADD DIALOG SXADIAL VER IS 1 MAINLINE YES

ADD SUBSCHEMA DEMOSSH1 SCHEMA DEMOSCHM VER 1

ADD MAPNAME SXA1 VER IS 1

ADD REC CUSTOMER VER 2 NC

ADD REC SXAREC1 VER 1 NC WK

ADD PREMAP SXAPREMAP VER 1

ADD RESPONSE PROCESS NAME SXARESP5 VER 2 CONTROL KEY

PF5 EXEC NO

ADD RESPONSE PROCESS NAME SXARESP3 VER 1 CONTROL KEY ENTER

RESPONSE FIELD SXARESP4 EXEC NO.

Appendix D. Application and Dialog Utilities D-29

D.2 ADSOBCOM

D.2.7 JCL and commands

JCL and commands for running ADSOBCOM are shown below for OS/390,
VSE/ESA, VM/ESA, and BS2000/OSD systems.

 D.2.7.1 OS/390 JCL

Sample OS/390 JCL for central version: ADSOBCOM (OS/390)

// EXEC PGM=ADSOBCOM,REGION=5HHK

//STEPLIB DD DSN=idms.loadlib,DISP=SHR

//CDMSLIB DD DSN=idms.loadlib,DISP=SHR

//sysctl DD DSN=idms.sysctl,DISP=SHR

//dclscr DD DSN=cdms.dclscr,DISP=SHR

//SYSLST DD SYSOUT=A

//SYSUDUMP DD SYSOUT=A

//SYSIDMS DD _

SYSIDMS parameters

//SYSIPT DD _

control statements

/_

Note: The CDMSLIB must contain the CA_C runtime library components.

The local scratch file need not be specified if the SYSIDMS
parameterXA_SCRATCH=ON is specified.

�� See CA-IDMS Database Administration, for more information about SYSIDMS
parameters.

Sample OS/390 JCL for local mode: To execute ADSOBCOM in local mode,
perform the following steps:

1. Remove the sysctl DD statement.

2. Add the following statements after the CDMSLIB DD statement:

idms.loadlib data set name of the CA-IDMS load library

idms.sysctl data set name of the SYSCTL file

dclscr ddname of the local scratch file (if one is specified in
the DMCL; otherwise not required)

cdms.dclscr data set name of the local scratch file (if one is
specified; otherwise not required)

sysctl ddname of the SYSCTL file

SYSIDMS parameters a list of the SYSIDMS parameters that pertain to this
job

D-30 CA-ADS Reference

D.2 ADSOBCOM

//sysjrnl DD DSN=idms.tapejrnl,DISP=(NEW,KEEP),UNIT=tape

 //dictdb DD DSN=idms.appldict.ddldml,DISP=SHR

 //dloddb DD DSN=idms.appldict.ddldclod,DISP=SHR

 //dmsgdb DD DSN=idms.sysmsg.ddldcmsg,DISP=SHR

idms.appldict.ddldml data set name of the data dictionary DDLDML area

idms.appldict.ddldclod data set name of the data dictionary load area

idms.sysmsg.ddldcmsg data set name of the data dictionary message area

idms.tapejrnl data set name of the tape journal file

dictdb ddname of the data dictionary DDLDML area

dloddb ddname of the data dictionary load area (DDLDCLOD)

dmsgdb ddname of the data dictionary message area
(DDLDVM/ESAG)

sysjrnl ddname of the tape journal file

tape symbolic device name of the tape journal file

 D.2.7.2 VSE/ESA JCL

Sample VSE/ESA JCL for central version: ADSOBCOM (VSE/ESA)

// UPSI b if specified in ADSOOPTI module

// DLBL userlib

// EXTENT ,nnnnnn

// LIBDEF _,SEARCH=(userlib.cdmslib)

// DLBL dclscr,,'cdms.dcllscr',,DA

// EXTENT sysH14,nnnnnn

// ASSGN sysH14,DISK,VOL=nnnnnn,SHR

// EXEC ADSOBCOM

control statements

SYSIDMS parameters

Appendix D. Application and Dialog Utilities D-31

D.2 ADSOBCOM

�� See CA-IDMS Database Administration, for more information about SYSIDMS
parameters.

Sample VSE/ESA JCL for local mode: To execute ADSOBCOM in local mode,
perform the following steps:

1. Remove the UPSI specification.

2. Add the following statements before the EXEC statement:

 // DLBL dictdb,'idms.appldict.ddldml',,DA

 // EXTENT sysH15,nnnnnn

 // ASSGN sysH15,DISK,VOL=nnnnnn,SHR

 // DLBL dloddb,'idms.appldict.ddldclod',,DA

 // EXTENT sysH17,nnnnnn

 // ASSGN sysH17,DISK,VOL=nnnnnn,SHR

 // DLBL dmsgdb,'idms.sysmsg.ddldcmsg',,DA

 // EXTENT sysH16,nnnnnn

 // ASSGN sysH16,DISK,VOL=nnnnnn,SHR

 // TLBL sysHH9,'idms.tapejrnl',,nnnnnn,,f

 // ASSGN sysHH9,TAPE,VOL=nnnnnn

b appropriate 1- to 8-character UPSI bit switch, as
specified in the IDMSOPTI module

cdms.dclscr file-id of the local scratch area

dclscr filename of the local scratch area (if one is specified in
the DMCL, otherwise not required)

sysH14 logical unit assignment for the local scratch area (if one
is specified in the DMCL, otherwise not required)

nnnnnn volume serial number of the library

userlib filename of the CA-IDMS library

userlib.cdmslib file-id of the CA-IDMS sublibrary

SYSIDMS parameters A list of SYSIDMS parameters for this job

D-32 CA-ADS Reference

D.2 ADSOBCOM

idms.appldict.ddldml file-id of the data dictionary DDLDML area

idms.appldict.ddldclod file-id of the data dictionary load area

idms.sysmsg.ddldcmsg file-id of the data dictionary message area

idms.tapejrnl file-id of the tape journal file

dictdb filename of the data dictionary DDLDML area

dloddb filename of the data dictionary load area
(DDLDCLOD)

dmsgdb filename of the data dictionary message area
(DDLDVM/ESAG)

f file number of the tape journal file

nnnnnn volume serial number

sysHH9 logical unit assignment for the tape journal file

sysH15 logical unit assignment for the data dictionary
DDLDML area

sysH16 logical unit assignment for the data dictionary message
area

sysH17 logical unit assignment for the data dictionary load area

 D.2.7.3 VM/ESA commands

Sample VM/ESA commands for central version: ADSOBCOM (VM/ESA)

FILEDEF SYSLST PRINTER

FILEDEF SYSIDMS DISK sysidms input a

FILEDEF SYSIPT DISK bgen input a

GLOBAL LOADLIB idmslib

OSRUN ADSOBCOM

�� See CA-IDMS Database Administration, for more information about SYSIDMS
parameters.

sysidms input a filename, filetype, and filemode of the file containing
the SYSIDMS input parameters

bgen input a file identifier of the file containing ADSOBCOM
source statements

idmslib filename of the CA-IDMS LOADLIB library

Appendix D. Application and Dialog Utilities D-33

D.2 ADSOBCOM

Sample VM/ESA commands for local mode: To execute ADSOBCOM in local
mode, add the following commands before the OSRUN command:

FILEDEF sysjrnl TAP1 SL VOLID nnnnnn (RECFM VB LRECL 111 BLKSIZE bbb

FILEDEF dictdb DISK dictdb dictfile d (RECFM F LRECL ppp BLKSIZE ppp XTENT nnn

FILEDEF dloddb DISK dloddb dictfile f (RECFM F LRECL ppp BLKSIZE ppp XTENT nnn

FILEDEF dmsgdb DISK dmsgdb dictfile e (RECFM F LRECL ppp BLKSIZE ppp XTENT nnn

Specifying central version or local mode: To specify whether ADSOBCOM
executes under central version or in local mode, take one of the following actions:

1. Specify either CVMACH=dc/ucf-machine-name (for central version) or *LOCAL*
(for local mode) as the first statement submitted to ADSOBCOM.
Dc/ucf-machine-name is the 1- through 8-character user identifier of the VM/ESA
virtual machine in which the DC/UCF system is executing.

2. Link edit ADSOBCOM with an IDMSOPTI module that specifies either
CVMACH=dc/ucf-machine-name (for central version) or CENTRAL=NO (for
local mode). Instructions for creating an IDMSOPTI module are given in
CA-IDMS System Operations.

3. Code PARM='CVMACH=dc/ucf-machine-name' or PARM='*LOCAL*' on the
OSRUN command used to invoke the compiler. This option is not allowed if the
OSRUN command is issued from a VM/ESA EXEC program; however, it is
allowed if the OSRUN command is issued from a System Product interpreter
(REXX) or EXEC 2 program.

Additional information about central version and local mode operations in the
VM/ESA environment can be found in Installation and Maintenance Guide —
VM/ESA.

bbb block size of the tape journal file

dictdb ddname of the data dictionary DDLDML area

dictdb dictfile d file identifier of the data dictionary DDLDML area

dloddb ddname of the data dictionary load area (DDLDCLOD)

dloddb dictfile f file identifier of the data dictionary load area

dmsgdb ddname of the data dictionary message area
(DDLDVM/ESAG)

dmsgdb dictfile e file identifier of the data dictionary message area

lll record length of the tape journal file

nnnnnn volume serial number of the tape journal file

ppp page size of the area

sysjrnl ddname of the tape journal file

D-34 CA-ADS Reference

D.2 ADSOBCOM

 D.2.7.4 BS2000/OSD JCL

Sample BS2000/OSD JCL for central version: ADSOBCOM (BS2000/OSD)

/ADD-FILE-LINK L-NAME=CDMSLIB,F-NAME=idms.dba.loadlib

/ADD-FILE-LINK L-NAME=CDMSLIB1,F-NAME=idms.loadlib

/ADD-FILE-LINK L-NAME=CDMSLODR,F-NAME=idms.loadlib

/ADD-FILE-LINK L-NAME=sysctl,F-NAME=idms.sysctl,SHARED-UPD=_YES

/ADD-FILE-LINK L-NAME=SYSIDMS,F-NAME=idms.sysidms

/ASSIGN-SYSDTA TO=_SYSCMD

/START-PROG _MOD(ELEM=ADSOBCOM,LIB=idms.loadlib,RUN-MODE=_ADV)

control statements

�� See CA-IDMS Database Administration, for more information about SYSIDMS
parameters.

Sample BS2000/OSD JCL for local mode: To execute ADSOBCOM in local
mode, perform the following steps:

1. Remove the ADD-FILE-LINK statement for the sysctl

2. Add the following statements:

/ADD-FILE-LINK L-NAME=dictdb,F-NAME=idms.appldict.dictdb,SHARED-UPD=_YES

/ADD-FILE-LINK L-NAME=dloddb,F-NAME=idms.appldict.dloddb,SHARED-UPD=_YES

/ADD-FILE-LINK L-NAME=dcmsg,F-NAME=idms.sysmsg.ddldcmsg,SHARED-UPD=_YES

/ADD-FILE-LINK L-NAME=sysjrnl,F-NAME=idms.tapejrnl

idms.loadlib filename of the CA-IDMS system load library

idms.dba.loadlib data set name of the load library containing the DMCL
and database name table load modules

idms.sysidms filename of the file containing the SYSIDMS
parameters

idms.sysctl filename of the SYSCTL file

sysctl linkname of the SYSCTL file

Appendix D. Application and Dialog Utilities D-35

D.2 ADSOBCOM

idms.appldict.ddldml filename of the data dictionary DDLDML area

idms.appldict.ddldclod filename of the data dictionary load area

idms.sysmsg.ddldcmsg filename of the data dictionary message area

idms.tapejrnl filename of the tape journal file

dictdb linkname of the data dictionary DDLDML area

dloddb linkname of the data dictionary load area
(DDLDCLOD)

dmsgdb linkname of the data dictionary message area
(DDLDVM/ESAG)

sysjrnl linkname of the tape journal file

D-36 CA-ADS Reference

D.3 ADSOBSYS

 D.3 ADSOBSYS

The ADSOBSYS utility builds a load module (ADSOOPTI) that supplies CA-ADS
system generation parameters to ADSOBCOM. ADSOBSYS must be run once for
each DC/UCF system at installation and whenever CA-ADS system generation
parameters are changed.

The ADSOOPTI module can be either loaded at runtime by ADSOBCOM or link
edited with ADSOBCOM. Note that with dynamic loading, the module must have the
default ADSOOPTI module name.

ADSOSYS can also supply system generation parameters to the CA-ADS/Batch
runtime system.

ADSOBSYS uses standard control statements in addition to the SYSTEM statement.
The control statements and the JCL used to run ADSOBSYS are presented below.
Parameters given for the SYSTEM statement apply to CA-ADS applications.

 D.3.1 Control statements

The following control statements can be used with ADSOBSYS:

ICTL: Specifies scanning a specified column range for meaningful data. The default
specification is 1-72. The ICTL statement format is shown below:

��─┬───┬──────────────────────��

└─ ICTL = (start-column-number end-column-number) ─┘

OCTL: Specifies the number of lines to appear on each page of the ADSOBSYS
printed output. The default specification is 56. The OCTL statement format is shown
below:

��─┬──────────────────────────────┬───��

└─ OCTL = (line-count-number) ─┘

ISEQ: Specifies sequence checking on source statements falling within a specified
column range. The ISEQ statement format is shown below:

��─┬───┬──────────────────────��

└─ ISEQ = (start-column-number end-column-number) ─┘

The ICTL, OCTL, and ISEQ control statements must be submitted to the job stream
before the SYSTEM statement.

Appendix D. Application and Dialog Utilities D-37

D.3 ADSOBSYS

 D.3.2 SYSTEM statement

Purpose: Specifies the DC/UCF system for which the ADSOOPTI module is being
created.

 Syntax:

��── SYStem ──┬──────┬── system-number ──┬─────────────────────────────────┬──��

├─ IS ─┤ └─ MODULE ─┬──────┬─ module-name ─┘

└─ = ─┘ ├─ IS ─┤

 └─ = ─┘

 Parameters

SYStem IS system-number
Specifies the 1- to 4-digit number of the DC/UCF system for which the
ADSOOPTI module is being created.

MODULE IS module-name
Specifies the 1 to 8-character name of the module being created. The default
module name is ADSOOPTI.

D-38 CA-ADS Reference

D.3 ADSOBSYS

D.3.3 JCL and commands

JCL and commands for running ADSOBSYS are shown below for OS/390, VSE/ESA,
VM/ESA, and BS2000/OSD systems.

 D.3.3.1 OS/390 JCL

Sample OS/390 JCL for central version: ADSOBSYS (central version)
(OS/390)

//ADSOBSYS EXEC PGM=ADSOBSYS,REGION=1H24K

//STEPLIB DD DSN=idms.dba.loadlib,DISP=SHR

// DD DSN=idms.loadlib,DISP=SHR

//sysctl DD DSN=idms.sysctl,DISP=SHR

//dcmsg DD DSN=idms.sysmsg.ddldcmsg,DISP=SHR

//SYSLST DD SYSOUT=A

//SYSPCH DD DSN=&&object,DISP=(NEW,PASS),

// UNIT=disk,SPACE=(TRK,1),

// DCB=(RECFM=FB,LRECL=8H,BLKSIZE=312H)

//SYSIDMS DD _

DMCL=dmcl-name

DBNAME=system

Put other SYSIDMS parameters, as appropriate, here

/_

//SYSIPT DD _

Put ADSOBSYS parameters, as appropriate, here

/_

//_

//LINKOPTI EXEC PGM=IEWL,REGION=1H24K,PARM='LET,LIST,NCAL,XREF'

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD UNIT=disk,SPACE=(CYL,(3,2))

//SYSLMOD DD DSN=idms.dba.loadlib,DISP=SHR

//SYSLIN DD DSN=&&object,DISP=(OLD,DELETE)

// DD _

 ENTRY adsoopti

 NAME adsoopti(R)

/_

//_

Appendix D. Application and Dialog Utilities D-39

D.3 ADSOBSYS

Sample OS/390 JCL for local mode ADSOBSYS (local mode) (OS/390)

//ADSOBSYS EXEC PGM=ADSOBSYS,REGION=1H24K

//STEPLIB DD DSN=idms.dba.loadlib,DISP=SHR

// DD DSN=idms.loadlib,DISP=SHR

//dcdml DD DSN=idms.system.ddldml,DISP=SHR

//dcmsg DD DSN=idms.sysmsg.ddldcmsg,DISP=SHR

//sysjrnl DD DUMMY

//SYSLST DD SYSOUT=A

//SYSPCH DD DSN=&&object,DISP=(NEW,PASS),

// UNIT=disk,SPACE=(TRK,1),

// DCB=(RECFM=FB,LRECL=8H,BLKSIZE=312H)

//SYSIDMS DD _

DMCL=dmcl-name

DBNAME=system

Put other SYSIDMS parameters, as appropriate, here

/_

//SYSIPT DD _

Put ADSOBSYS parameters, as appropriate, here

/_

//_

//LINKOPTI EXEC PGM=IEWL,REGION=1H24K,PARM='LET,LIST,NCAL,XREF'

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD UNIT=disk,SPACE=(CYL,(3,2))

//SYSLMOD DD DSN=idms.dba.loadlib,DISP=SHR

//SYSLIN DD DSN=&&object,DISP=(OLD,DELETE)

// DD _

 ENTRY adsoopti

 NAME adsoopti(R)

/_

//_

D-40 CA-ADS Reference

D.3 ADSOBSYS

�� See CA-IDMS Database Administration, for more information about SYSIDMS
parameters.

idms.dba.loadlib Data set name of the load library containing the DMCL
and database name table load modules

idms.loadlib Data set name of the load library containing the
CA-IDMS executable modules

sysctl DDname of the SYSCTL file

idms.sysctl Data set name of the SYSCTL file

dcmsg DDname of the system message (DDLDVM/ESAG)
area

idms.sysmsg.ddldcmsg Data set name of the system message
(DDLDVM/ESAG) area

&&object Temporary data set name for the ADSOOPTI object
module

disk Symbolic device name for the work files

dmcl-name Name of the DMCL load module

system Name of the system dictionary

adsoopti ADSOOPTI module name

dcdml DDname of the system dictionary definition
(DDLDML) area

idms.system.ddldml Data set name of the system dictionary definition
(DDLDML) area

sysjrnl DDname of the tape journal file

Appendix D. Application and Dialog Utilities D-41

D.3 ADSOBSYS

 D.3.3.2 VSE/ESA JCL

Sample VSE/ESA JCL for central version: ADSOBSYS (VSE/ESA)

// UPSI b if specified in IDMSOPTI module

// DLBL userlib

// EXTENT ,nnnnnn

// LIBDEF _,SEARCH=(userlib.cdmslib)

// LIBDEF _,CATALOG=(userlib.cdmslib)

// DLBL IDMSPCH,'temp.adsootpi'

// EXTENT sysnnn,nnnnnn,,,ssss,llll

 ASSGN sysnnn,DISK,VOL=nnnnnn,SHR

// EXEC ADSOBSYS

 SYSTEM=nnnn,MODULE=adsoopti

SYSIDMS parameters

/_

// DLBL IJSYSIN,'temp.adsoopti'

// EXTENT SYSIPT,nnnnnn

 ASSGN SYSIPT,DISK,VOL=nnnnnn,SHR

// OPTION CATAL

 PHASE adsoopti,_

 INCLUDE

 ENTRY (adsoopti)

// EXEC LNKEDT

 CLOSE SYSIPT,SYSRDR

 CLOSE sysclb,UA

�� See CA-IDMS Database Administration, for more information about SYSIDMS
parameters.

adsoopti ADSOOPTI module name

SYSIDMS parameters a list of SYSIDMS parameters for this job

b appropriate 1- to 8-character UPSI bit switch, as
specified in the IDMSOPTI module

llll number of tracks (CKD) or blocks (FBA) of the disk
extent

nnnn version number of the DC/UCF system

nnnnnn volume serial number of the library

ssss starting track (CKD) or block (FBA) of the disk extent

sysnnn logical unit assignment of the temporary adsoopti
module

temp.adsoopti temporary file-id of the ADSOOPTI module

userlib filename of the user library

userlib.cdmslib file-id of the CA-IDMS sublibrary

D-42 CA-ADS Reference

D.3 ADSOBSYS

Sample VSE/ESA JCL for local mode: To execute ADSOBSYS in local mode,
perform the following steps:

1. Remove the UPSI specification.

2. Add the following statements before the EXEC ADSOBSYS statement:

 // DLBL dictcb,'idms.appldict.ddldml',,DA

 // EXTENT sysH15,nnnnnn

 // ASSGN sysH15,DISK,VOL=nnnnnn,SHR

 // DLBL dloddb,'idms.appldict.ddldclod',,DA

 // EXTENT sysH17,nnnnnn

 // ASSGN sysH17,DISK,VOL=nnnnnn,SHR

 // DLBL dmsgdb,'idms.sysmsg.ddldcmsg',,DA

 // EXTENT sysH16,nnnnnn

 // ASSGN sysH16,DISK,VOL=nnnnnn,SHR

 // TLBL sysHH9,'idms.tapejrnl',, nnnnnn,,f

 // ASSGN sysHH9,TAPE,VOL=nnnnnn

idms.appldict.ddldml file-id of the data dictionary DDLDML area

idms.appldict.ddldclod file-id of the data dictionary load area

idms.sysmsg.ddldcmsg file-id of the data dictionary message area

idms.tapejrnl file-id of the tape journal file

dictdb filename of the data dictionary DDLDML area

dloddb filename of the data dictionary load area
(DDLDCLOD)

dmsgdb filename of the data dictionary message area
(DDLDVM/ESAG)

f file number of the tape journal file

nnnnnn volume serial number of the library

sysHH9 logical unit assignment for the tape journal file

sysH15 logical unit assignment for the data dictionary
DDLDML area

sysH16 logical unit assignment for the data dictionary message
area

sysH17 logical unit assignment for the data dictionary load area

userlib filename of the user library

userlib.cdmslib file-id of the CA-IDMS sublibrary

Appendix D. Application and Dialog Utilities D-43

D.3 ADSOBSYS

 D.3.3.3 VM/ESA commands

Sample VM/ESA commands for central version: ADSOBSYS (VM/ESA)

FILEDEF SYSLST PRINTER

FILEDEF SYSPCH DISK opti TEXT a (LRECL 8H BLKSIZE 4HH RECFM FB

FILEDEF SYSIDMS DISK sysidms input a

FILEDEF SYSIPT DISK bsys input a

GLOBAL LOADLIB idmslib

OSRUN ADSOBSYS

FILEDEF SYSPRINT PRINTER

TXTLIB DEL utextlib opti

TXTLIB ADD utextlib opti

FILEDEF SYSLMOD DISK uloadlib LOADLIB a6 (RECFM V LRECL 1H24 BLKSIZE 1H24

FILEDEF objlib DISK utextlib TXTLIB a

LKED linkctl (LET LIST NCAL

Linkage editor control statements (linkctl):

 INCLUDE objlib (opti)

 ENTRY opti

 NAME opti(R)

�� See CA-IDMS Database Administration, for more information about SYSIDMS
parameters.

Sample VM/ESA commands for local mode: To execute ADSOBSYS in local
mode, add the following commands before the OSRUN command:

FILEDEF sysjrnl TAP1 SL VOLID nnnnnn (RECFM VB LRECL 111 BLKSIZE bbb

FILEDEF dictdb DISK dictdb dictfile d (RECFM F LRECL ppp BLKSIZE ppp XTENT nnn

FILEDEF dloddb DISK dloddb dictfile f (RECFM F LRECL ppp BLKSIZE ppp XTENT nnn

FILEDEF dmsgdb DISK dmsgdb dictfile e (RECFM F LRECL ppp BLKSIZE ppp XTENT nnn

sysidms input a filename, filetype, and filemode of the file containing
the SYSIDMS input parameters

bsys input a file identifier of the file containing ADSOBSYS source
statements

idmslib filename of the CA-IDMS LOADLIB library

linkctl filename of the file containing the linkage editor control
statements; the file must have the filetype of TEXT

objlib ddname of the user TXTLIB library

opti filename of the file for the ADSOOPTI module

opti TEXT a file identifier of the file for the ADSOOPTI module

uloadlib LOADLIB a6 file identifier of the user LOADLIB library

utextlib filename of a user TXTLIB library

D-44 CA-ADS Reference

D.3 ADSOBSYS

Specifying central version or local mode: To specify whether ADSOBSYS
executes under central version or in local mode, perform one of the following
actions:

1. Specify either CVMACH=dc/ucf-machine-name (for central version) or *LOCAL*
(for local mode) as the first statement to submit to ADSOBSYS.
Dc/ucf-machine-name is the 1- through 8-character user identifier of the VM/ESA
virtual machine in which the DC/UCF system is executing.

2. Link edit ADSOBSYS with an IDMSOPTI module that specifies either
CVMACH=dc/ucf-machine-name (for central version) or CENTRAL=NO (for
local mode). Instructions for creating an IDMSOPTI module are given in
CA-IDMS System Operations.

3. Code PARM='CVMACH=dc/ucf-machine-name' or PARM='*LOCAL*' on the
OSRUN command used to invoke the compiler. This option is not allowed if the
OSRUN command is issued from a VM/ESA EXEC program; however, it is
allowed if the OSRUN command is issued from a System Product interpreter
(REXX) or EXEC 2 program.

Additional information about central version and local mode operations in the
VM/ESA environment can be found in CA-IDMS Installation and Maintenance Guide
— VM/ESA.

bbb block size of the tape journal file

dictdb ddname of the data dictionary DDLDML area

dictdb dictfile d file identifier of the data dictionary DDLDML area

dloddb ddname of data dictionary load area (DDLDCLOD)

dloddb dictfile f file identifier of the data dictionary load area

dmsgdb ddname of data dictionary message area
(DDLDVM/ESAG)

dmsgdb dictfile e file identifier of the data dictionary message area

lll record length of the tape journal file

nnnnnn volume serial number of the tape journal file

ppp page size of the area

sysjrnl ddname of the tape journal file

Appendix D. Application and Dialog Utilities D-45

D.3 ADSOBSYS

 D.3.3.4 BS2000/OSD JCL

Sample BS2000/OSD JCL for central version: ADSOBSYS (BS2000/OSD)

/ADD-FILE-LINK L-NAME=CDMSLIB,F-NAME=idms.dba.loadlib

/ADD-FILE-LINK L-NAME=CDMSLIB1,F-NAME=idms.loadlib

/ADD-FILE-LINK L-NAME=CDMSLODR,F-NAME=idms.loadlib

/ADD-FILE-LINK L-NAME=sysctl,F-NAME=idms.sysctl,SHARED-UPD=_YES

/ADD-FILE-LINK L-NAME=SYSIDMS,F-NAME=idms.sysidms

/ASSIGN-SYSOPT TO=temp.pch

/ASSIGN-SYSDTA TO=_SYSCMD

/START-PROG _MOD(ELEM=ADSOBSYS,LIB=idms.loadlib,RUN-MODE=_ADV)

SYSTEM=nnnn,MODULE=adsoopti

/ASSIGN-SYSOPT TO=_PRIMARY

/ADD-FILE-LINK L-NAME=OBJMINPT,F-NAME=temp.pch

/ADD-FILE-LINK L-NAME=OBJMLIBO,F-NAME=idms.objlib.user

/START-PROG _MOD(ELEM=BS2KOBJM,LIB=idms.loadlib,RUN-MODE=_ADV)

MODULE=adsoopti

/START-BINDER

//START-LLM-CREATION INTERNAL-NAME=adsoopti

//INC-MOD LIB=idms.objlib.user,ELEM=adsoopti

//SAVE-LLM LIB=idms.dba.loadlib,ELEM=adsoopti(VER=@),OVER=YES

//END

�� See CA-IDMS Database Administration, for more information about SYSIDMS
parameters.

Sample BS2000/OSD JCL for local mode: To execute ADSOBSYS in local
mode, perform the following steps:

1. Remove the ADD-FILE-LINK statement for sysctl

2. Add the following statements:

adsoopti ADSOOPTI module name

idms.loadlib filename of the CA-IDMS load library

idms.dba.loadlib data set name of the load library containing the DMCL
and database name table load modules

idms.objlib.user filename of the user object library

idms.sysidms filename of the file containing the SYSIDMS
parameters

idms.sysctl filename of the SYSCTL file

nnnn version number of the DC/UCF system

sysctl linkname of the SYSCTL file

temp.pch temporary file containing the ADSOOPTI object
module

D-46 CA-ADS Reference

D.3 ADSOBSYS

/ADD-FILE-LINK L-NAME=dictdb,F-NAME=idms.appldict.dictdb,SHARED-UPD=_YES

/ADD-FILE-LINK L-NAME=dloddb,F-NAME=idms.appldict.dloddb,SHARED-UPD=_YES

/ADD-FILE-LINK L-NAME=dcmsg,F-NAME=idms.sysmsg.ddldcmsg,SHARED-UPD=_YES

/ADD-FILE-LINK L-NAME=sysjrnl,F-NAME=idms.tapejrnl

Note: The program BS2KOBJM is executed to translate the object code generated by
the ADSOBSYS program from an IBM format to a SIEMENS format, and to
put the resulting object code into the object library specified by the user.

idms.appldict.ddldml filename of the data dictionary

idms.appldict.ddldclod filename of the data dictionary load area

idms.sysmsg.ddldcmsg filename of the data dictionary message area

idms.tapejrnl filename of the tape journal file

dictdb linkname of the data dictionary DDLDML area

dloddb linkname of the data dictionary load area
(DDLDCLOD)

dmsgdb linkname of the data dictionary message area
(DDLDVM/ESAG)

sysjrnl linkname of the journal file

Appendix D. Application and Dialog Utilities D-47

D.3 ADSOBSYS

 D.4 ADSOBTAT

What it is: ADSOBTAT is a batch utility that allows the application developer to
add, modify, and delete entries in the task application table (TAT). For example,
ADSOBTAT can be used to update the TAT for a dictionary when an application is
migrated to that dictionary.

�� For more information about the TAT, see Chapter 2, “CA-ADS Application
Compiler (ADSA).”

Note:

When an application is added, modified, or deleted by using the application
compiler, the TAT is automatically updated in the applicable dictionary, and
ADSOBTAT is not required. The TAT can also be updated online by using
ADSOTATU, as described under 'ADSOTATU' earlier in this appendix.

How it works: At the beginning of an ADSOBTAT run, ADSOBTAT copies the
TAT stored either in the load area or, if the load area has no TAT, in the load library.
If no TAT exists, ADSOBTAT creates a new TAT if the action is ADD. ADSOBTAT
updates the copy of the TAT, based on the control statements provided. At the end of
the run, if the control statements contain no errors, ADSOBTAT stores the copy of the
TAT in the load area, replacing any previous copy.

ADSOBTAT does not update a TAT's program description element (PDE) to indicate
that a new copy of the TAT exists in the load area. If a TAT is updated by
ADSOBTAT and then referenced during a single DC/UCF run, the application
developer should update the PDE by issuing the following command:

DCMT VARY PROGRAM $ACF@TAT NEW COPY

�� For more information on the DCMT VARY PROGRAM command, refer to
CA-IDMS System Tasks and Operator Commands.

ADSOBTAT output: ADSOBTAT produces a listing that displays the card images
of all control statements processed. Error messages, if any, are listed under their
associated control statements. If an error in any control statement prevents
ADSOBTAT from updating the TAT, ADSOBTAT issues the following message:

DC474H29 ___ WARNING ___ DUE TO ABOVE ERROR TAT WILL NOT BE

UPDATED DURING THIS RUN; SYNTAX CHECKING ONLY

Note: At a site where alternate dictionaries are used, the system database name table
must map network subschema IDMSNWKL (used by ADSOBTAT) to the
copy of the network subschema appropriate for the alternate dictionary. The
database name table is defined by the DBNAME statement.

D-48 CA-ADS Reference

D.4 ADSOBTAT

 D.4.1 Control statements

 Purpose:

 Syntax:

��───┬───┬──────────────────────────────�

└─ DICTNAME ──┬──────┬── dictionary-name ─┘

├─ IS ─┤

 └─ = ─┘

 �───┬────────────────────────────────────┬───────────────────────────────────�

└─ DICTNODE ──┬──────┬── node-name ──┘

├─ IS ─┤

 └─ = ─┘

 �───┬───┬────────�

└─ LOCation for ─┬─ APPlication ─┬───┬──────┬───┬─ loadAREA ← ─┬┘

└─ ADB ─────────┘ ├─ IS ─┤ └─ loadLIB ─┘

 └─ = ─┘

 ┌───┐

 �───↓──┬──────────┬──┬── APPlication ─┬───┬──────┬─── application ──┴────────��
├─ ADD ────┤ └── ADB ─────────┘ ├─ IS ─┤

├─ MODify ─┤ └─ = ─┘

└─ DELete ─┘

Expansion of application

 �─── application-name ─┬───┬───────────��

└─ VERsion ───┬──────┬─── version-number ─┘

├─ IS ─┤

 └─ = ─┘

 Parameters

DICTNAME IS dictionary-name
Specifies the 1- to 8-character name of the data dictionary in which the TAT is
stored.

DICTNAME defaults to the name of the primary dictionary.

DICTNODE IS node-name
Specifies the node that controls the data dictionary in which the TAT is stored.

LOCation for APPlication IS
Introduces where the applications specified in the control statements are stored.

ADB can be used in place of APPLICATION; the equals sign (=) can be used in
place of IS.

loadAREA
Specifies that the applications are stored in the load area.

LOADAREA is the default when no location for application is specified.

Appendix D. Application and Dialog Utilities D-49

D.4 ADSOBTAT

loadLIB
Specifies that the applications are stored in the load (core-image) library.

The load libraries in which the applications are stored must be specified in the
JCL, as follows:

■ OS/390 JCL -- In the CDMSLIB statement or, if a CDMSLIB statement is
not specified, in the STEPLIB statement

■ VSE/ESA JCL -- In the ASSGN/EXTNT statement for the private
core-image library or in the LIBDEF equivalent

■ VM/ESA commands -- In the GLOBAL LOADLIB command, added to the
list of libraries

■ BS2000/OSD JCL -- In the CDMSLIB chain

ADD
Specifies that task code entries for an application are being added to the TAT.

If ADD is specified and the TAT already contains entries for the application, the
action is changed to MOD and a warning message is displayed. If ADD is
specified and the TAT does not exist, ADSOBTAT creates a TAT.

ADD is the default if the TAT contains no entries for the application.

MODify
Specifies that the task code entries for an application are being replaced in the
TAT by the task codes defined in the current application load module.

If MOD is specified and the TAT does not contain entries for the application,
ADSOBTAT treats the request like an ADD request.

MOD is the default if the TAT already contains entries for the application.

DELete
Specifies that the task code entries for an application are being deleted from the
TAT.

If the TAT does not contain entries for the application, a warning message is
issued. Note that the application does not have to exist when DEL is specified.

APPlication IS application
Identifies the application.

See expansion of application below.

application-name
Specifies the name of the application.

VERsion is version-number
Gives the version number (in the range 1 through 9999) of the application.

The default version number is 1.

 Usage:

D-50 CA-ADS Reference

D.4 ADSOBTAT

Considerations: If specified, the DICTNODE and DICTNAME clauses must be
coded first, in any order. The LOCATION clauses, if specified, must be coded next,
in any order. The ADD/MODIFY/DELETE APPLICATION clause must be coded
last, and can be repeated any number of times to reference several applications.

D.4.2 JCL and commands

JCL for running ADSOBTAT is shown below for OS/390, VSE/ESA, VM/ESA, and
BS2000/OSD systems.

 D.4.2.1 OS/390 JCL

Sample OS/390 JCL for central version: ADSOBTAT (central version)
(OS/390)

//ADSOBTAT EXEC PGM=ADSOBTAT,REGION=1H24K

//STEPLIB DD DSN=idms.dba.loadlib,DISP=SHR

// DD DSN=idms.loadlib,DISP=SHR

//sysctl DD DSN=idms.sysctl,DISP=SHR

//dcmsg DD DSN=idms.sysmsg.ddldcmsg,DISP=SHR

//SYSLST DD SYSOUT=A

//SYSIDMS DD _

DMCL=dmcl-name

Put other SYSIDMS parameters, as appropriate, here

/_

//SYSIPT DD _

Put ADSOBTAT parameters, as appropriate, here

/_

//_

ADSOBTAT (local mode) (OS/390)

//ADSOBTAT EXEC PGM=ADSOBTAT,REGION=1H24K

//STEPLIB DD DSN=idms.dba.loadlib,DISP=SHR

// DD DSN=idms.loadlib,DISP=SHR

//dloddb DD DSN=idms.appldict.ddldclod,DISP=SHR

//dcmsg DD DSN=idms.sysmsg.ddldcmsg,DISP=SHR

//sysjrnl DD DSN=idms.tapejrnl,DISP=(NEW,CATLG),UNIT=tape

//SYSLST DD SYSOUT=A

//SYSIDMS DD _

DMCL=dmcl-name

Put other SYSIDMS parameters, as appropriate, here

/_

//SYSIPT DD _

Put ADSOBTAT parameters, as appropriate, here

/_

//_

Appendix D. Application and Dialog Utilities D-51

D.4 ADSOBTAT

�� See CA-IDMS Database Administration, for more information about SYSIDMS
parameters.

idms.dba.loadlib Data set name of the load library containing the DMCL
and database name table load modules

idms.loadlib Data set name of the load library containing the
CA-IDMS executable modules

sysctl DDname of the SYSCTL file

idms.sysctl Data set name of the SYSCTL file

dcmsg DDname of the system message (DDLDVM/ESAG)
area

idms.sysmsg.ddldcmsg Data set name of the system message
(DDLDVM/ESAG) area

dmcl-name Name of the DMCL load module

dloddb DDname of the application dictionary definition load
(DDLDCLOD) area

idms.appldict.ddldclod Data set name of the application dictionary definition
load (DDLDCLOD) area

sysjrnl DDname of the tape journal file

idms.tapejrnl Data set name of the tape journal file

tape symbolic device name of the tape journal file

 D.4.2.2 VSE/ESA JCL

Sample VSE/ESA JCL for central version: ADSOBTAT (VSE/ESA)

// UPSI b if specified in the IDMSOPTI module

// DLBL userlib

// EXTENT ,nnnnnn

// LIBDEF _,SEARCH=(userlib.cdmslib)

// EXEC ADSOBTAT

control statements

SYSIDMS parameters

D-52 CA-ADS Reference

D.4 ADSOBTAT

�� See CA-IDMS Database Administration, for more information about SYSIDMS
parameters.

Sample VSE/ESA JCL for local mode: To execute ADSOBTAT in local mode,
perform the following steps:

1. Remove the UPSI specification.

2. Add the following statements before the EXEC statement:

 // DLBL dloddb,'idms.appldict.ddldclod',,DA

 // EXTENT sysH17,nnnnnn

 // ASSGN sysH17,DISK,VOL=nnnnnn,SHR

 // DLBL dmsgdb,'idms.sysmsg.ddldcmsg',,DA

 // EXTENT sysH16,nnnnnn

 // ASSGN sysH16,DISK,VOL=nnnnnn,SHR

 // TLBL sysHH9,'idms.tapejrnl',,nnnnnn,,f

 // ASSGN sysHH9,TAPE,VOL=nnnnnn

b appropriate 1- through 8-character UPSI bit switch, as
specified in the IDMSOPTI module

nnnnnn volume serial number of the library

userlib filename of the user library

userlib.cdmslib file-id of the CA-IDMS sublibrary

SYSIDMS parameters A list of SYSIDMS parameters for this job

idms.appldict.ddldclod file-id of the data dictionary load area

idms.sysmsg.ddldcmsg file-id of the data dictionary message area

idms.tapejrnl file-id of the tape journal file

dloddb filename of the data dictionary load area
(DDLDCLOD)

dmsgdb filename of the data dictionary message area
(DDLDVM/ESAG)

f file number of the tape journal file

nnnnnn volume serial number

sysHH9 logical unit assignment for the tape journal file

sysH16 logical unit assignment for the data dictionary message
area

sysH17 logical unit assignment for data dictionary load area

Appendix D. Application and Dialog Utilities D-53

D.4 ADSOBTAT

 D.4.2.3 VM/ESA commands

Sample VM/ESA commands for central version: ADSOBTAT (VM/ESA)

FILEDEF SYSLST PRINTER

FILEDEF SYSIDMS DISK sysidms input a

FILEDEF SYSIPT DISK btat input a

GLOBAL LOADLIB idmslib

OSRUN ADSOBTAT

�� See CA-IDMS Database Administration, for more information about SYSIDMS
parameters.

Sample VM/ESA commands for local mode: To execute ADSOBTAT in local
mode, add the following commands before the OSRUN command:

FILEDEF sysjrnl TAP1 SL VOLID nnnnnn (RECFM VB LRECL 111 BLKSIZE bbb

FILEDEF dictdb DISK dictdb dictfile d (RECFM F LRECL ppp BLKSIZE ppp XTENT nnn

FILEDEF dloddb DISK dloddb dictfile f (RECFM F LRECL ppp BLKSIZE ppp XTENT nnn

FILEDEF dmsgdb DISK dmsgdb dictfile e (RECFM F LRECL ppp BLKSIZE ppp XTENT nnn

sysidms input a filename, filetype, and filemode of the file containing
the SYSIDMS input parameters

btat input a file identifier of the file containing ADSOBTAT source
statements

idmslib filename of the CA-IDMS LOADLIB library

bbb block size of the tape journal file

dictdb ddname of the data dictionary DDLDML area

lll record length of the tape journal file

nnnnnn volume serial number of the tape journal file

sysjrnl ddname of the tape journal file

dictdb dictfile d file identifier of the data dictionary DDLDML area

ppp page size of the area

dloddb ddname of the data dictionary load area (DDLDCLOD)

dloddb dictfile f file identifier of the data dictionary load area

dmsgdb ddname of the data dictionary message area
(DDLDVM/ESAG)

dmsgdb dictfile e file identifier of the data dictionary message area

D-54 CA-ADS Reference

D.4 ADSOBTAT

Specifying central version or local mode: To specify whether ADSOBTAT
executes under central version or in local mode, take one of the following actions:

1. Specify either CVMACH=dc/ucf-machine-name (for central version) or *LOCAL*
(for local mode) as the first statement to submit to ADSOBTAT.
Dc/ucf-machine-name is the 1- through 8-character user identifier of the VM/ESA
virtual machine in which the DC/UCF system is executing.

2. Link edit ADSOBTAT with an IDMSOPTI module that specifies either
CVMACH=dc/ucf-machine-name (for central version) or CENTRAL=NO (for
local mode). Instructions for creating an IDMSOPTI module are given in
CA-IDMS System Operations.

3. Code PARM='CVMACH=dc/ucf-machine-name' or PARM='*LOCAL*' on the
OSRUN command used to invoke the compiler. This option is not allowed if the
OSRUN command is issued from a VM/ESA EXEC program; however, it is
allowed if the OSRUN command is issued from a System Product interpreter
(REXX) or EXEC 2 program.

Additional information about central version and local mode operations in the
VM/ESA environment can be found in CA-IDMS Installation and Maintenance —
VM/ESA.

 D.4.2.4 BS2000/OSD JCL

Sample BS2000/OSD JCL for central version: ADSOBTAT (BS2000/OSD)

/ADD-FILE-LINK L-NAME=CDMSLIB,F-NAME=idms.dba.loadlib

/ADD-FILE-LINK L-NAME=CDMSLIB1,F-NAME=idms.loadlib

/ADD-FILE-LINK L-NAME=CDMSLODR,F-NAME=idms.loadlib

/ADD-FILE-LINK L-NAME=sysctl,F-NAME=idms.sysctl,SHARED-UPD=_YES

/ADD-FILE-LINK L-NAME=SYSIDMS,F-NAME=idms.sysidms

/ASSIGN-SYSDTA TO=_SYSCMD

/START-PROG _MOD(ELEM=ADSOBTAT,LIB=idms.loadlib,RUN-MODE=_ADV)

control statements

�� See CA-IDMS Database Administration, for more information about SYSIDMS
parameters.

idms.loadlib filename of the CA-IDMS load library

idms.dba.loadlib data set name of the load library containing the DMCL
and database name table load modules

idms.sysidms filename of the file containing the SYSIDMS
parameters

idms.sysctl filename of the SYSCTL file

sysctl linkname of the SYSCTL file

Appendix D. Application and Dialog Utilities D-55

D.4 ADSOBTAT

Sample BS2000/OSD JCL for local mode: To execute ADSOBTAT in local
mode, perform the following steps:

1. Remove the ADD-FILE-LINK statement for sysctl

2. Add the following statements:

/ADD-FILE-LINK L-NAME=dloddb,F-NAME=idms.appldict.dloddb,SHARED-UPD=_YES

/ADD-FILE-LINK L-NAME=dcmsg,F-NAME=idms.sysmsg.ddldcmsg,SHARED-UPD=_YES

/ADD-FILE-LINK L-NAME=sysjrnl,F-NAME=idms.tapejrnl

idms.appldict.ddldclod filename of the data dictionary load area

idms.sysmsg.ddldcmsg filename of the data dictionary message area

idms.tapejrnl filename of the tape journal file

dloddb linkname of the data dictionary load area
(DDLDCLOD)

dmsgdb linkname of the data dictionary message area
(DDLDVM/ESAG)

sysjrnl linkname of the tape journal file

D-56 CA-ADS Reference

D.5 ADSOTATU

 D.5 ADSOTATU

ADSOTATU is an online utility that allows the application developer to add, modify,
and delete entries in the task application table (TAT). For example, ADSOTATU can
be used to update the TAT for a dictionary when an application is migrated to that
dictionary.

�� For more information about the TAT, see Chapter 2, “CA-ADS Application
Compiler (ADSA).”

Note: When an application is added, modified, or deleted by using the application
compiler, the TAT is automatically updated in the applicable dictionary, and
ADSOTATU is not required. The TAT can also be updated in batch by using
ADSOBTAT, as described under 'ADSOBTAT' later in this appendix.

ADSOTATU is invoked by specifying the task code ADSOTATU at the DC/UCF
prompt.

ADSOTATU displays the TAT Update Utility screen on which the application
developer specifies the name of the application whose TAT entries are being added,
modified, or deleted. Additionally, the application developer can specify the dictionary
that contains the TAT, the node that controls the dictionary, the application version
number, and the action to take regarding the TAT entries.

Each time the application developer specifies an action, ADSOTATU makes a copy of
the TAT stored in either the program pool, load area (if the program pool has no
TAT), or load library (if the load area has no TAT). If no TAT exists, ADSOTATU
creates a new TAT if the action is ADD. ADSOTATU updates the copy of the TAT
as appropriate; stores the copy in the load area, replacing any previous TAT; and
issues a DCMT VARY PROGRAM NEW COPY command to update the TAT in the
program pool.

Specifying activities: The application developer specifies activities in an
ADSOTATU session by using the ENTER, CLEAR, and PF9 keys, as follows:

■ ENTER instructs ADSOTATU to add, modify, or delete entries in the TAT, based
on information specified on the screen.

If the TAT is updated successfully, ADSOTATU issues a confirming message.
The screen can be used repeatedly to specify several applications.

If ADSOTATU encounters an error, it redisplays the screen with an appropriate
error message. The application developer can change information on the screen,
then resubmit the information by pressing ENTER.

■ CLEAR and PF9 terminate ADSOTATU and return control to DC/UCF.

Appendix D. Application and Dialog Utilities D-57

D.5 ADSOTATU

D.5.1 TAT update utility screen

 Sample screen

< =

COMPUTER ASSOCIATES INTERNATIONAL, INC.

CA-ADS REL 15.H ___TAT UPDATE UTILITY___

 DICT NAME: NODE:

 ACTION: (ADD/MOD/DEL)

 APPLICATION: VERSION:

L M

 Field descriptions:

DICT NAME: Specifies the 1- to 8-character name of the data dictionary in which
the TAT is stored.

DICT NAME defaults to the name of the primary dictionary. Specifying a dictionary
name is equivalent to issuing a DCUF SET DICTNAME command under DC/UCF.

NODE: (for DDS only) Specifies the DDS node that controls the data dictionary
specified by DICT NAME.

NODE defaults to the system currently in use. Specifying a node name is equivalent
to issuing a DCUF SET DICTNODE command under DC/UCF.

ADD: Specifies that task code entries for an application are being added to the TAT.

If ADD is specified and the TAT already contains entries for the application, the
action is changed to MOD and a warning message is displayed.

ADD is the default if the TAT contains no entries for the application.

MODify: Specifies that the task code entries for an application are being replaced in
the TAT by the task codes defined in the current application load module.

If MODIFY is specified and the TAT does not contain entries for the application,
ADSOTATU treats the request like an ADD request.

D-58 CA-ADS Reference

D.5 ADSOTATU

MODIFY is the default if the TAT already contains entries for the application.

DELete: Specifies that the task code entries for an application are being deleted from
the TAT.

If the TAT does not contain entries for the application, a warning message is issued.
Note that the application does not have to exist when DEL is specified.

APPLICATION: Specifies the name of the application. If the action is ADD or
MOD, the specified application must exist in the data dictionary specified by DICT
NAME.

VERSION: Specifies the version number (in the range 1 through 9999) of the
application. The default version number is 1.

Appendix D. Application and Dialog Utilities D-59

D-60 CA-ADS Reference

Appendix E. Activity Logging for a CA-ADS Dialog

E.1 Overview . E-3
E.2 Data dictionary organization . E-4
E.3 Activity logging record formats . E-5

Appendix E. Activity Logging for a CA-ADS Dialog E-1

E-2 CA-ADS Reference

E.1 Overview

 E.1 Overview

What it does: The activity logging feature of CA-ADS creates activity records that
document all potential database activity for a dialog. Documentation is based on the
database commands issued explicitly or implicitly by the dialog's processes.
(Examples of implicit database commands are the implicit READY command, issued
automatically for each subschema area when a run unit is opened for a process, and
the BIND command, issued automatically for each subschema record used by the
dialog.) If enabled, activity logging is performed when a dialog is compiled and has
no impact on runtime performance.

The activity logging feature can be used to perform the following tasks:

■ Monitor database usage If runtime activity is high for a particular subschema
area, set, record, or logical record, activity records can show which dialogs contain
database commands that potentially access the entity.

■ Modify dictionary entity occurrences If a subschema area, set, record, or
logical record needs to be modified, activity records can show which dialogs need
to be recompiled as a result of the modification.

Enabling activity logging: The activity logging feature is enabled or disabled at
system generation. The application developer can override the system generation
default when defining a dialog.

�� For more information, see Chapter 3, “CA-ADS Dialog Compiler (ADSC).”

If enabled, the activity logging feature creates database activity records when a dialog
is compiled. Database activity records can be accessed by using query programs such
as OnLine Query, by using the Data Dictionary Reporter, or by writing an appropriate
program.

The remainder of this appendix describes the data dictionary organization and the
format of activity logging records.

Appendix E. Activity Logging for a CA-ADS Dialog E-3

E.2 Data dictionary organization

E.2 Data dictionary organization

Database activity records are stored as junction records between a dialog's PROG-051
record and the dictionary's AREA, SET, RECORD, and LOGICAL RECORD entities,
as follows:

Thus, if an area, set, record, or logical record must be modified, the application
developer can follow a path from the dictionary entity occurrence, through the
appropriate junction record, to the PROG-051 records of the dialogs that need to be
recompiled because of the modification.

Dictionary entity Junction record stored

SSA-024 (AREA) AFACT-057

SSOR-034 (SET) SETACT-061

SSR-032 (RECORD) RCDACT-059

LR-190 (LOGICAL RECORD) LRACT-193

E-4 CA-ADS Reference

E.3 Activity logging record formats

E.3 Activity logging record formats

An activity logging record contains the following information about the database
command being logged for a dialog:

■ The function number of the database command being logged

■ The number of times in the dialog that the database command is coded against the
dictionary entity occurrence

■ The name of the dictionary entity occurrence

AFACT-057: The record description of the AFACT-057 junction record is as
follows:

H2 AF-FUNCT-H57 PICTURE IS S9(4) USAGE IS COMP.

H2 AF-COUNT-H57 PICTURE IS 9(4) USAGE IS COMP.

H2 AF-AREA-OWN-H57 PICTURE IS X(32) USAGE IS DISPLAY.

H2 EXTRNL-NAME-H57 PICTURE IS X(32) USAGE IS DISPLAY.

H2 FILLER PICTURE IS X(4) USAGE IS DISPLAY.

SETACT-061: The format of the SETACT-061 junction record is as follows:

H2 SA-FUNCT-H61 PICTURE IS 9(4) USAGE IS COMP.

H2 SA-COUNT-H61 PICTURE IS 9(4) USAGE IS COMP.

H2 SA-SET-OWN-H61 PICTURE IS X(32) USAGE IS DISPLAY.

H2 FILLER PICTURE IS X(4) USAGE IS DISPLAY.

RCDACT-059: The format of the RCDACT-059 junction record is as follows:

H2 RA-FUNCT-H59 PICTURE IS 9(4) USAGE IS COMP.

H2 RA-COUNT--H59 PICTURE IS 9(4) USAGE IS COMP.

H2 RA-RCD-OWN-H59 PICTURE IS X(32) USAGE IS DISPLAY.

H2 FILLER PICTURE IS X(4) USAGE IS DISPLAY.

LRACT-193: The format of the LRACT-193 junction record is as follows:

H2 FUNCT-193 PICTURE IS S9(4) USAGE IS COMP.

H2 COUNT-193 PICTURE IS S9(4) USAGE IS COMP.

H2 LR-NAM-193 PICTURE IS X(16) USAGE IS DISPLAY.

 Record fields

FUNCT
Contains the numeric function number that is assigned to the database command
or logical record command being logged.

The function numbers for the AFACT-057 (AREA), SETACT-061 (SET),
RCDACT-059 (RECORD), and LRACT-193 (LOGICAL RECORD) junction
records and their associated database or logical record commands are listed in the
following table.

Note: No activity records are stored for the COMMIT and ROLLBACK database
commands.

Appendix E. Activity Logging for a CA-ADS Dialog E-5

E.3 Activity logging record formats

COUNT
Contains the number of times the logged database command is coded in all of the
processes of the dialog.

OWN
Contains the name of the record, set, or area whose activity is being documented
by the record, set, or area activity record.

EXTRNL-NAME
Contains spaces.

NAM
Contains the name of the logical record whose activity is being documented by the
logical record activity record.

 Usage:

Considerations: The COUNT field for a READY command reflects only the
effective READY commands issued implicitly or explicitly in the dialog's processes.
An implicit or explicit READY command sets the usage mode of a database area
during a dialog's premap or response process.

�� For more information, see Chapter 17, “Map Commands.”

If the same area is named in more than one READY command in a process, the usage
mode specified in the last READY command applies to the named area for the entire
process. The COUNT field of a junction record for a READY command reflects the
number of processes for which the specified usage mode applies to the specified area.

Activity logging function numbers and associated commands

Junction record Function
number

Navigational or LRF database command

AFACT-057 3 FIND

 6 KEEP and KEEP LONGTERM

15 ACCEPT

23 FIND KEEP

36 READY USAGE MODE UPDATE

37 READY USAGE MODE RETRIEVAL

38 READY USAGE MODE PROTECTED
UPDATE

39 READY USAGE MODE PROTECTED
RETRIEVAL

E-6 CA-ADS Reference

E.3 Activity logging record formats

Junction record Function
number

Navigational or LRF database command

40 READY USAGE MODE EXCLUSIVE
RETRIEVAL

41 READY USAGE MODE EXCLUSIVE
UPDATE

43 OBTAIN

63 OBTAIN KEEP

SETACT-061 3 FIND

 6 KEEP and KEEP LONGTERM

 7 CONNECT

11 DISCONNECT

15 ACCEPT

16 IF SET EMPTY/MEMBER

17 RETURN

23 FIND KEEP

43 OBTAIN

63 OBTAIN KEEP

RCDACT-059 2 ERASE

 3 FIND

 5 GET

 6 KEEP and KEEP LONGTERM

 7 CONNECT

 8 MODIFY

11 DISCONNECT

12 STORE

14 BIND

15 ACCEPT

23 FIND KEEP

43 OBTAIN

63 OBTAIN KEEP

LRACT-193 2 ERASE

 8 MODIFY

Appendix E. Activity Logging for a CA-ADS Dialog E-7

E.3 Activity logging record formats

Junction record Function
number

Navigational or LRF database command

12 STORE

43 OBTAIN

E-8 CA-ADS Reference

Appendix F. Built-in Function Support

F.1 Overview . F-3
F.2 Internal structure of built-in functions . F-4

F.2.1 Master function table . F-5
F.2.2 Model XDE module . F-6
F.2.3 XDEs and VXDEs . F-8
F.2.4 Processing program modules . F-17
F.2.5 Runtime processing of built-in functions F-24

F.3 Assembler macros . F-27
F.3.1 #EFUNMST . F-27
F.3.2 RHDCEVBF . F-28
F.3.3 #EFUNMOD . F-31

F.4 Changing invocation names . F-40
F.5 Creating user-defined built-in functions F-41

F.5.1 Steps for generating a user-defined built-in function F-41
F.5.2 LRF considerations for user-defined built-in functions F-42
F.5.3 Calling a user-defined built-in function F-42

Appendix F. Built-in Function Support F-1

F-2 CA-ADS Reference

F.1 Overview

 F.1 Overview

About built-in functions: CA-ADS built-in function support enables an installation
to change the invocation names of built-in functions and to generate user-defined
built-in functions. This appendix discusses the following topics:

■ The internal structure of built-in functions

■ The assembler macros that define components of built-in functions

■ How to change invocation names

■ How to create user-defined built-in functions

To change invocation names, the user needs only to read the following topics:

■ The discussion of the master function table under 'Internal Structure of Built-in
Functions'

■ The discussion of the #EFUNMST macro under 'Assembler Macros'

■ The instructions provided under 'Changing Invocation Names'

Appendix F. Built-in Function Support F-3

F.1 Overview

F.2 Internal structure of built-in functions

CA-ADS supplied built-in functions and user-defined built-in functions share the same
internal structure. This structure consists of the following components.

Master function table: The master function table lists the invocation names for
each built-in function. The master function table is used during process compilation to
associate a coded invocation name with a real (generic) function name and to point to
a model XDE (expression description element) module that describes the function.

Model XDE modules: Model XDE modules contain one or more model XDE
tables. Each model XDE table describes a function, including the function's
parameters, work area requirements, result field, and processing program name.
During process compilation, a model XDE table is used to produce a series of XDEs
that form the compiled representation of the function.

XDEs and VSDEs: XDEs and VXDEs describe functions at runtime. XDEs are
created during process compilation; one VXDE (variable expression description
element) is created for each XDE at runtime to hold variable information.

Processing program modules: Processing program modules contain processing
logic for one or more functions. At runtime, when the XDEs and VXDEs for the
function are processed, the runtime system calls the appropriate program and passes to
it all required information. The program executes, then returns control to the dialog.

F-4 CA-ADS Reference

F.2 Internal structure of built-in functions

F.2.1 Master function table

The master function table is a dictionary load module that lists the invocation names
for all CA-ADS supplied and user defined built-in functions. Each entry contains a
function invocation name, a corresponding real (generic) function name, and the name
of the model XDE module that describes the function.

The concatenate function, for example, has by default three invocation names:
CONCATENATE, CONCAT, and CON. Each invocation name has an entry in the
master function table. Each entry also specifies the real function name for the
concatenate function, CONCAT, and the model XDE module that describes the
concatenate function, RHDCEV51.

During compilation of a coded function, the dialog compiler searches the master
function table for the coded invocation name. If it finds an entry, it uses the
information in the entry to find the model XDE module that describes the function; if
it does not find an entry, it generates a syntax error message.

Note: At runtime, an invocation name that is used in a dialog must not duplicate the
name of a record element known to the dialog. If it does, CA-ADS interprets the
function as a subscripted reference to the record element.

The DSECT for an entry in the master function table is shown below. The load
module for the master function table is stored in the data dictionary load area under
the name RHDCEVBF.

DSECT for a master function table entry

EFMASDS DSECT 11:15:3H H3/H6/86 HHHH1HHH

_ EVAL MASTER FUNCTION TABLE ENTRY DSECT HHHH2HHH

EFMINAML DS H LENGTH OF INVOCATION FUNCT NAME HHHH3HHH

EFMINAME DS CL32 FUNCTION NAME - INVOCATION HHHH4HHH

EFMRNAME DS CL8 FUNCTION NAME - REAL HHHH5HHH

EFMMPGMN DS CL8 PROGRAM NAME - MODEL XDE TABLE HHHH6HHH

EFMMPGMV DS H PROGRAM VERSION - MODEL XDE TABLE HHHH7HHH

EFMFLAG1 DS XL1 MASTER FUNCTION ENTRY FLAG1 HHHH8HHH

EFMASFU EQU X'8H' AGGREGATE FUNCTION ENTRY HHHH9HHH

 DS XL3 FILLER HHH1HHHH

EFMASLNG EQU _-EFMASDS LENGTH OF MASTER ENTRY HHH11HHH

Appendix F. Built-in Function Support F-5

F.2 Internal structure of built-in functions

F.2.2 Model XDE module

A model XDE module is a load module that contains one or more model XDE tables,
each describing a function. During process compilation of a function, the dialog
compiler uses the appropriate model XDE table to generate a series of XDEs that form
the compiled representation of the function. A model XDE table contains the
following entries:

■ A header entry that contains the function's processing program name, work area
requirements, number and types of function parameters, and a description of the
function's result field. Each model XDE table contains one header entry.

■ XDE entries that describe the function's parameters and determine certain
characteristics of the result field. One XDE entry exists for each function
parameter.

■ Data type conversion entries that define the data types and length of each
function parameter. One or more data type conversion entries exist for each
function parameter.

The DSECTs for these three entries are shown below. The load modules for the
model XDE modules are stored in the load library. The model XDE source and load
modules for the CA-ADS supplied built-in functions are called RHDCEV51,
RHDCEV52, RHDCEV53, and RHDCEV59, and can be used as a reference when
defining user-defined built-in functions.

F-6 CA-ADS Reference

F.2 Internal structure of built-in functions

DSECTs for the model XDE table entries

EFHDRDS DSECT 12:H1:34 H5/18/84 HHHH1HHH

_ EVAL FUNCTION MODEL TABLE HEADER DSECT HHHH2HHH

EFHNEXT DS H OFFSET TO NEXT HDR ENTRY HHHH3HHH

EFHFUNNM DS CL8 FUNCTION NAME - REAL HHHH4HHH

EFHPPGMN DS CL8 PROCESSING PROGRAM NAME HHHH5HHH

EFHPPGMV DS H PROCESSING PROGRAM VERSION HHHH6HHH

EFHFUNCN DS XL1 FUNCTION NUMBER HHHH7HHH

 DS XL1 FILLER HHHH8HHH

EFHWORKL DS H LENGTH OF REQUIRED WORKAREA HHHH9HHH

EFHZOPND DS HXL4 4 X'HH'S INDICATE ZERO OPERANDS HHH1HHHH

EFHFOPDN DS H NUMBER OF FIXED OPERANDS HHH11HHH

EFHVOPDO DS H OFFSET TO VARIABLE OPERAND MODEL HHH12HHH

EFHRESLN DS H RESULT LENGTH IN BYTES HHH13HHH

EFHRDATP DS XL1 RESULT DATA TYPE HHH14HHH

EFHRNDEC DS XL1 RESULT NUMBER DECIMALS HHH15HHH

 DS XL4 FILLER HHH16HHH

EFHDRLNG EQU _-EFHDRDS LENGTH OF FUNCTION MODEL HEADER HHH17HHH

EFXDEDS DSECT H7:36:43 H5/31/84 HHHH1HHH

_ EVAL FUNCTION MODEL XDE DSECT HHHH2HHH

EFXNEXT DS H OFFSET TO NEXT MODEL XDE HHHH3HHH

EFXNDEC DS XL1 NUMBER OF DECIMALS HHHH4HHH

EFXRLCF DS XL1 RESULT LENGTH CALCULATION FLAG HHHH5HHH

EFXRLCP EQU X'8H' ADD LENGTH HHHH6HHH

EFXRLCS EQU X'4H' SUBT LENGTH HHHH7HHH

_ IF ZERO, IGNORE HHHH8HHH

EFXFLAG1 DS XL1 FIRST FLAG HHHH9HHH

EFXF1MAN EQU X'8H' ON=MANDATORY, OFF=OPTIONAL HHH1HHHH

EFXF1TRU EQU X'4H' ON=TRUNCATE, OFF=ROUND HHH11HHH

EFXF1RES EQU X'2H' RESULT CHARACTERISTICS DEFAULT HHH12HHH

 SPACE 1 HHH13HHH

 DS XL3 FILLER HHH14HHH

EFXDCTN DS H NUMBER OF ENTRIES IN DATA CONV TBL HHH145HH

EFXLNG1 EQU _-EFXDEDS BASE LENGTH OF ENTRY HHH15HHH

 SPACE 1 HHH16HHH

_ DATA TYPE CONVERSION TABLE HHH17HHH

EFXCNVE DSECT CONVERSION TBL ENTRY DSECT HHH18HHH

EFXSRCT DS XL1 SOURCE DATATYPE HHH19HHH

EFXTART DS XL1 TARGET DATATYPE HHH2HHHH

EFXTARL DS H TARGET LENGTH HHH21HHH

 DS XL2 FILLER HHH22HHH

 SPACE 1 HHH23HHH

EFXDCTL EQU _-EFXSRCT LENGTH OF ENTRY HHH24HHH

Appendix F. Built-in Function Support F-7

F.2 Internal structure of built-in functions

F.2.3 XDEs and VXDEs

XDEs (expression description elements) and VXDEs (variable expression description
elements) form the compiled representation of a process at runtime. During
compilation, each process statement is converted into a series of XDEs that represent
the operands and operations within each statement. The XDEs of the statements are
strung together to form the compiled representation of the process. At runtime, the
runtime system builds a VXDE for each XDE. VXDEs contain variable runtime
information; the information in XDEs does not change.

The compiled representation of a function consists of one operand XDE/VXDE for
each parameter and one function XDE/VXDE for the function. These XDE/VXDE
pairs contain the following information:

 ■ Function XDE/VXDE:

– Name and address of the function's processing program module

– Function number identifying the appropriate program within the processing
program module

– Number of function operands (parameters)

– Address of the work area available to the processing program

– Description and address of the function's result field

– Address of the operand VXDE for the last parameter in the parameter list

 ■ Operand XDE/VXDE:

– Description and address of the operand (parameter)

– Address of the operand VXDE for the previous parameter in the parameter list

The DSECTs for the XDE and VXDE are shown below.

�� The runtime use of the XDEs and VXDEs is described under "Runtime Processing"
later in this appendix.

F-8 CA-ADS Reference

F.2 Internal structure of built-in functions

DSECT of the XDE (Expression Description Element)

 SPACE 1

_ _

_ #AXDEDS - EXPRESSION DESCRIPTION ELEMENT _

_ _

_ THIS COPY MEMBER IS INCLUDED IN #XDEDS. IF ANY CHANGES ARE _

_ MADE HERE, PLEASE INSURE THAT ALL MODULES CONTAINING #XDEDS ARE _

_ REASSEMBLED. _

_ _

_ THIS MACRO ALLOWS THE ADS MODULES TO MORE EASILY REFERENCE XDE _

_ FIELDS WHEN AN XDE IS BEING BUILT WITHOUT THE XDENEXT FIELD. _

_ _

 SPACE

XDEDATAD DS HF (REAL) DATA ADDRESS (OPERAND OR RESULT)

XDEBRNXT DS HF __ BRANCH OPERATOR XDES ONLY

_ IF RELOCATABLE XDE MODE TO BE USED IN

_ EVAL/ADSOXDES THE OFFSET

_ OF BRANCH TARGET XDE

_ FROM 1ST XDE ELSE REAL ADDRESS OF TARGET

XDEDTABO DS H (LOGICAL)DATA ADDRESS - ADCON TABLE OFFSET

XDEDDSPL DS H (LOGICAL) DATA ADDRESS - DISPLACEMENT

_ NOTE THAT REAL ADDRESSES ARE DISTINGUISHED FROM LOGICAL ADDRESSES

_ (TABLE OFFSET/DISPLACEMENT PAIRS) BY THE X'8H' BIT OF THE HIGH

_ ORDER ADDRESS BYTE - ON => REAL, OFF => LOGICAL.

 SPACE

XDETGT EQU X'8H' High order bit of DYN used as temporary

_ flag during executable code generation

_ with following meaning :

_ ON -> This XDE is a target of a BRC2 XDE

_ OFF -> This XDE is a NOT a BRC2 target

_ This bit will ALWAYS be OFF in ALL XDEs

_ in a final FDB.

XDEDYN DS H OFFSET INTO DYNAMIC AREA OF VXDE

XDEDATLN DS HH OPERAND LENGTH (IN BYTES)

XDEBROFF DS HH __ BRANCH OPERATOR XDES ONLY

_ OFFSET IN XDES OF BRANCH TARGET FROM

_ BRANCH OPERATOR. ONLY USED WHEN CONTIG.

_ XDE MODE USED IN EVAL.

_ ALWAYS USED IN ADSOXDES.

XDEBITDP DS C BIT DISPLACEMENT (FOR MB-BIN)

XDEBITLN DS C LEN (NBR OF BITS)(FOR MB-BIN)

 ORG XDEDATLN

XDEEPWR DS C POWER 1H-1 (FOR EDIT)

XDEEPLN DS HC PICTURE LENGTH (FOR EDIT)

XDEESGN DS C SIGN CHARACTER (FOR EDIT)

XDENODEC DS C NUMBER OF DECIMAL PLACES

XDEDATYP DS C OPERAND DATA TYPE

 SPACE

Appendix F. Built-in Function Support F-9

F.2 Internal structure of built-in functions

_ XDE DATA TYPE EQUATES :

XDEDGRP EQU H GROUP

XDEDEBCD EQU 1 EBCDIC

XDEDHBIN EQU 2 BINARY HALFWORD

XDEDFBIN EQU 3 BINARY FULLWORD

XDEDSPAK EQU 4 PACKED DECIMAL (SIGNED)

XDEDUPAK EQU 5 PACKED DECIMAL (UNSIGNED)

XDEDSZON EQU 6 ZONED DECIMAL (SIGNED)

XDEDUZON EQU 7 ZONED DECIMAL (UNSIGNED)

XDEDFLTD EQU 8 DISPLAY FLOATING POINT

XDEDSFLT EQU 9 INTERNAL FLOAT (SHORT)

XDEDLFLT EQU 1H INTERNAL FLOAT (LONG)

XDEDBIT EQU 11 BIT

XDEDDBIN EQU 12 BINARY DOUBLEWORD

XDEDFC EQU 13 FIGURATIVE CONSTANT

XDEDMBIN EQU 14 MULTI-BIT BINARY (PL1 STYLE)

XDEDVCHR EQU 15 VARYING CHARACTER

XDEDEDIT EQU 16 EDIT INFO

XDEDEDP EQU 17 EDIT PICTURE

XDEDGEXT EQU 18 EXTERNAL GRAPHICS SO......SI

XDEDGINT EQU 19 INTERNAL GRAPHICS

_ FOLLOWING EQU SHOULD ALWAYS REFLECT THE HIGHEST DATA TYPE

_ !!!!!!!!!!!!!!!! PLEASE NOTE : !!!!!!!!!!!!!!!!!!!!!!!

_ !!!! ANY CHANGE TO THE FOLLOWING EQUATE REQUIRES CHGS !!!

_ !!!! TO RHDCEVAL AND ADSOXDES.

_ !!!

XDEDMXTP EQU XDEDGINT MAX DATA TYPE VALUE

_ NOTE THAT RHDCEVAL CURRENTLY ONLY SUPPORTS BIT FIELDS IN LOGICAL

_ OPERATIONS.

 SPACE

XDEOPTYP DS HC OPERATION/OPERAND CODE

XDEEPAD DS C PAD CHARACTER (FOR EDIT)

 SPACE

_ XDE OPERATOR TYPE EQUATES :

XDEOOPND EQU H OPERAND (NOT OPERATOR)

XDEOPNOT EQU 5 LOGICAL "NOT"

XDEOPOR EQU 6 LOGICAL "OR"

XDEOPAND EQU 7 LOGICAL "AND"

XDEOPCNJ EQU 9 CLASS OF LOGICAL CONJUNCTIONS

XDEOPEQ EQU 1H "EQ" (RELATIONAL OPERATION)

XDEOPNE EQU 11 "NE"

XDEOPLT EQU 12 "LT"

XDEOPLE EQU 13 "LE"

XDEOPGT EQU 14 "GT"

XDEOPGE EQU 15 "GE"

XDEOMTCH EQU 16 "MATCHES"

XDEOPCON EQU 17 "CONTAINS"

XDEOPCMP EQU 18 "COMPARE"; 8:EQUAL, 4:<, 2:>

F-10 CA-ADS Reference

F.2 Internal structure of built-in functions

XDEOPREL EQU 19 CLASS OF RELATIONAL OPERATORS

XDEOUNMN EQU 2H UNARY "-"

XDEOADDN EQU 21 "+"

XDEOBNMN EQU 22 BINARY "-"

XDEOMULT EQU 23 "_"

XDEOPDIV EQU 24 "/"

XDEOPDVR EQU 25 "/" WITH REMAINDER

XDEOPART EQU 29 CLASS OF ARITHMETIC OPERATORS

_ NOTE : Test Under Mask used as pseudo-operator to

_ process "boolean variables", e.g. Map Status tests.

_ This operator will never appear directly

_ in an XDE list.

XDEOPTM EQU 35 "TEST UNDER MASK"

XDEOASGN EQU 4H "ASSIGNMENT"

_ NOTE : MULTIPLE ASSIGNMENT NO LONGER SUPPORTED

_ Operator code available for reuse.

_DEOASGM EQU 41 "ASSIGNMENT",MULTIPLE TARGETS

XDEOASGR EQU 42 REVERSE ASSIGNMENT

XDEOINDX EQU 45 ARRAY "INDEX"

_

_ NOTE : DATE CONVERSIONS NO LONGER SUPPORTED.

_ THESE CODES ARE AVAILABLE FOR REUSE.

_

_DEODTJA EQU 5H JULIAN DATE TO GREGORIAN (AMER.

_DEODTJG EQU 51 JULIAN DATE TO GREGORIAN (WORLD

_DEODTAJ EQU 52 GREGORIAN DATE (AMER. - MMDDYY)

_DEODTGJ EQU 53 GREGORIAN DATE (WORLD - DDMMYY)

_DEODTES EQU 55 CLASS OF DATE CONVERSIONS

_ NOTE : CONCATENATE NO LONGER SUPPORTED.

_ Operator code available for reuse.

Appendix F. Built-in Function Support F-11

F.2 Internal structure of built-in functions

_DEOCONC EQU 6H "CONCATENATION"

_ NOTE : INDA ONLY USED BY DEBUGGER.

_ Not supported by ADSOXDES.

XDEOINDA EQU 65 INDIRECT ADDRESSING

__ Following is a "pseudo-opcode" used only in generation

__ of machine code for True/False DXBs. This opcode will NEVER

__ appear in an XDE list. It is used only for convenience

__ so that generating code for T/F DXBs easily fits into the

__ standard methodology of code generation.

XDEODXTF EQU 78 True/False DXB

XDEOBRC2 EQU 79 BRANCH OPERATOR

XDEOBRCH EQU 8H BRANCH OPERATOR

_ NOTE : IF A NEW OPERATOR CODE IS ADDED WHICH IS

_ GREATER THAN THE CURRENT VALUE OF XDEOMXTP,

_ WE MUST CHANGE XDEOMXTP TO THIS NEW VALUE.

_ IN THIS CASE, WE MUST ALSO ADD ENTRIES TO THE

_ RHDCEVAL/ADSOXDES OPTABLE.

_ TO MINIMIZE THE SIZE OF OPTABLE,

_ IT WOULD BE BEST TO ASSIGN NEW CODES <=

_ THE CURRENT VALUE OF XDEOMXTP.

_ RHDCEVAL/ADSOXDES CURRENTLY ASSUME THAT THE ONLY

_ VALID OPTYP > XDEOMXTP IS XDEOUFUN AND THIS IS

_ HANDLED AS A SPECIAL CASE.

F-12 CA-ADS Reference

F.2 Internal structure of built-in functions

XDEOMXTP EQU XDEOBRCH MAX OPTYP VALID FOR USE WITH

_ RHDCEVAL/ADSOXDES OPTABLE.

XDEADSLR EQU 253 "OF LR" OPERAND (USED BY ADS/ONLINE)

_ CODE NOT USED FOR AN OPERATOR

XDEOKWD EQU 254 KEYWORD - USED BY LRF.

_ ALL OTHERS TREAT AS OPERAND

XDEOUFUN EQU 255 USER-DEFINED FUNCTION

XDEFLAG DS C FLAG BYTE

XDEFNVL EQU X'8H' FIELD IS NOT VALUED

XDEFNED EQU X'4H' NO DATA VALIDATION NEEDED

_ (FOR PACKED/ZONED FIELDS)

XDEFNCV EQU X'2H' NO CONVERSION NEEDED

XDEADDR EQU X'1H' XDEDATAD IS OPRND,VS OPRND ADR

_ XDEADDR USED ONLY BY DEBUGGER

XDEFFCZ EQU X'H8' FIGURATIVE CONSTANT ZERO

XDEBTF EQU X'H8' __ BRANCH OPERATOR XDES ONLY

_ ON => BRANCH IF PREVIOUS RESULT TRUE

_ OFF => BRANCH IF PREVIOUS RESULT FALSE

XDEBNEG EQU X'H4' __ BRANCH2 OPERATOR XDES ONLY

_ If we branch to last XDE, final

_ result is value at top of XDE stack.

_ ON => This value must be negated

_ OFF => Value is correct as is

XDEBEND EQU X'H2' __ BRANCH2 OPERATOR XDES ONLY

_ Special flag for branch on last XDE

_ in list to say final value must be

_ negated.

XDEFTRUN EQU X'H2' TRUNCATE IF DST DEC < SRC DEC

XDEFRQST EQU X'H1' USED BY LOGICAL RECORD PROCESSING

 SPACE 1

_ FLAG CODES FOR EDIT

XDEEF99 EQU X'H1' SIGNIFICANCE ON HI ORDER

XDEEFLT EQU X'H4' FLOAT THE SIGN CHARACTER

_ Blank on zero flag never utilized by any EVAL callers

_DEEFBZ EQU X'H8' BLANK ON ZERO

XDEEFPI EQU X'1H' XDEEADR POINTS TO PICTURE

XDEEFJL EQU X'2H' LEFT JUSTIFY OUTPUT

XDEEFNE EQU X'4H' PICTURE IS ALL X'S

XDEEFNS EQU X'8H' DO NOT SCALE SOURCE

_

Appendix F. Built-in Function Support F-13

F.2 Internal structure of built-in functions

XDELEN1 EQU _-XDE LENGTH OF STANDARD XDE

 SPACE

_ FOR USER DEFINED FUNCTIONS, SEVERAL ADDITION FLDS ARE REQUIRED

XDEUPGMN DS CL8 PROGRAM NAME

XDEUNOPS DS XL1 NBR OPERANDS

XDEUFUNC DS XL1 FUNCTION NUMBER

XDEUSTLN DS H REQ'D STORAGE LENGTH

XDEUPGMV DS H PROGRAM VERSION

XDEUFLG1 DS XL1 USER FUNCTION FLAG BYTE

XDEUAGFU EQU X'8H' AGGREGATE FUNCTION

 DS XL1 UNUSED

XDELEN2 EQU _-XDE LENGTH OF "USER FUNCTION" XDE

 SPACE

_ EQUATES FOR RESULTS OF COMPARISONS

XDECMPEQ EQU X'H8' RESULT OF COMPARE IS =

XDECMPLT EQU X'H4' RESULT OF COMPARE IS <

XDECMPGT EQU X'H2' RESULT OF COMPARE IS >

 SPACE

F-14 CA-ADS Reference

F.2 Internal structure of built-in functions

DSECT of the VXDE (Variable Expression Description Element)

_ _

_ THE VXDE IS THE DYNAMIC (WRITABLE) PORTION OF THE XDE _

_ _

VXDE DSECT 11:16:59 H4/14/87

 SPACE

VXDEFLAG DS HC FLAG BIT FOR NON-VALUED RESULT

VXDEFNVL EQU X'8H' NON-VALUED RESULT

VXDESNXT DS F OPERAND STACK NEXT XDE ADDR

VXDEFLG2 DS HC FLAG BIT FOR ALREADY VALIDATED DECIMAL

VXDEFNED EQU X'8H' ALREADY VALIDATED DECIMAL

VXDEXDEA DS F CORRESPONDING XDE ADDRESS

VXDEDADR DS F REAL DATA FIELD ADDRESS

VXDEDLEN EQU _-VXDE

 SPACE 1

Appendix F. Built-in Function Support F-15

F.2 Internal structure of built-in functions

_ FOR USER-DEFINED FUNCTIONS, THE FOLLOWING FLDS

_ ARE ALSO REQUIRED.

 SPACE 1

VXDEUPGA DS F PROGRAM ADDR

VXDEUWKA DS HF WORK AREA ADDR

VXDEUWTO DS H LOGICAL ADDR TBL OFFSET

VXDEUWDS DS H LOGICAL ADDR DISPL

VXDEUFLG DS CL1 FLAG FOR USER FUNCTIONS

VXDEUBRK EQU X'8H' AGGREGATE FUNCTION BREAK

VXDEUINT EQU X'4H' AGGREGATE FUNCTION INIT

VXDEUNIV EQU X'2H' NO INITIAL VALUE FOR AGG FUN BREAK

VXDEUBAD EQU X'1H' BAD DATA WITHIN BREAK

VXDEUOVR EQU X'H8' OVERFLOW WITHIN BREAK

VXDELOD #FLAG X'H4' USER PGM WAS #LOADED

 DS XL3 UNUSED

VXDEDLN2 EQU _-VXDE LNG OF EXTENSION

 SPACE

_ _

_ THE XDEIX IS THE DOPE VECTOR USED IN "INDEX" OPERATIONS TO DEFINE _

_ THE FORMAT OF THE ARRAY DIMENSIONS BEING ADDRESSED _

_ _

XDEIX DSECT

XDEIXDOA DS F "DEPEND ON" CONTROL FIELD ADDR

XDEIXNDM DS H NUMBER OF DIMENSIONS (IN ARRAY)

XDEIXFLG DS C FLAG BYTE

XDEIXFDF EQU X'8H' FULLWORD "DEPENDS ON" CONTROL FIELD

XDEIXFDH EQU X'4H' HALFWORD "DEPENDS ON" CONTROL FIELD

 DS C UNUSED BYTE

XDEIXRLN EQU _-XDEIX LENGTH OF DDOPE VECTOR ROOT

 SPACE

_ THE FOLLOWING FIELDS ARE REPEATED ONCE FOR EACH DIMENSION IN

_ THE ARRAY - FOR MBB TABLES, OFFSET AND SIZE ARE IN BITS

 SPACE

XDEIXOFF DS H FIELD OFFSET WITHIN CONTAINING OCCURRENCE

XDEIXSIZ DS H SIZE OF A DIMENSION OCCURRENCE

XDEIXMAX DS H MAXIMUM SUBSCRIPT VALUE FOR DIMENSION

XDEIXDLN EQU _-XDEIXOFF LENGTH OF ONE DIMENSION DESCRIPTOR

XDEIXLMT EQU 15 Maximum number of dimensions supported by ADS

 EJECT

F-16 CA-ADS Reference

F.2 Internal structure of built-in functions

F.2.4 Processing program modules

Processing program modules contain one or more programs; each program processes
one function. When a function XDE/VXDE is processed at runtime, the runtime
system calls the appropriate processing program module. The module performs the
operation, then returns control to the runtime system. The components of the source
module RHDCEV01, which contains the processing programs for the CA-ADS
supplied string functions are shown below.

Processing program load modules are usually stored in the load library. The load
modules for the CA-ADS supplied built-in functions are named RHDCEV01,
RHDCEV02, RHDCEV03, and RHDCEV09.

Appendix F. Built-in Function Support F-17

F.2 Internal structure of built-in functions

Components of processing program module RHDCEV01

RHDCEVH1 TITLE 'STRING PROCESSOR FOR RHDCEVAL'

_ RHDCEVH1 EP=EVH1EP1 H6/29/9H 14:H4:31

_CONTAINS PTF# 9H-H5-1133 EXG H5/31/9H

_CONTAINS PTF# 88-H7-1H81 JMA H2/26/9H

_CONTAINS PTF# 87-H6-1H31 MCM H8/21/87

_CONTAINS PTF# 85-H8-SHH4 MCM H3/31/86

_ CONTAINS PTF # LEFT/RITE JUST SPA CRM 14:37:29 H1/14/85

_ CONTAINS PTF # 84-11-1H67 CRM 13:37:25 12/14/84

 SPACE 1

 #MOPT CSECT=RHDCEVH1,ENV=USER

 SPACE 3

 __

 _ _

_ RHDCEVH1 IS THE STRING PROCESSOR FOR RHDCEVAL. ALL _

_ EVAL STRING-HANDLING FUNCTIONS ARE CONTAINED HEREIN. _

 _ _

_ THESE FUNCTIONS ARE: _

_ LENGTH - RETURN LENGTH OF A CHARACTER STRING _

_ SUBSTRING - RETURN A SUBSET OF A STRING _

_ INDEX - FIND POSITION OF A SUBSTRING _

_ VERIFY - INSURE ONE STRING CONTAINS ANOTHER _

_ REPLACE - TRANSLATE CHARACTERS _

_ CONCATENATE - SHOVE TWO OR MORE STRINGS TOGETHER _

_ LIKE - STRING PATTERN MATCHING _

 _ _

_ UPON ENTRY, R1 MUST CONTAIN THE ADDRESS OF THE OPERATION _

_ VXDE, WHICH IS BACK-CHAINED TO ALL OPERAND VXDE'S. _

 _ _

_ ALL STRING INPUT AND OUTPUT WILL BE VARYING-CHARACTER. _

_ ALL NUMERIC INPUT AND OUTPUT WILL BE HALFWORD-BINARY. _

 _ _

 __

 ┌─ EJECT

 │RHDCEVH1 CSECT _

│RHDCEVH1 AMODE ANY

│RHDCEVH1 RMODE 24

 │ USING EVH1EP1,R12 PROGRAM BASE

│ USING EVH1EP1+4H96,R1H USE SECOND BASE REGISTER

 │ USING WORKAREA,R11 WORKAREA BASE

 │ USING XDE,R8

 │ USING VXDE,R7

 │ SPACE 1

 │ ENTRY EVH1EP1

 Initialization │EVH1EP1 DS HH

 statements ─────────────────→ STM R14,R12,12(R13) SAVE REGISTERS

│ LR R12,R15 SET PROGRAM BASE

│ L R1H,BASE SET UP SECOND BASE REGISTER

│ B EVH1STRT AND GO START UP

 │BASE DC A(EVH1EP1+4H96)

 │EVH1STRT DS HH

│ LR R7,R1 GET RESULT VXDE ADDR

│ L R8,VXDEXDEA AND XDE ADDR

│ L R11,VXDEUWKA GET WORKAREA ADDR

│ STM R7,R8,WKRESADR AND SAVE THEM

 │ SPACE 1

│ MVI WKERRMSG,C' ' NOW BLANK OUT

└─ MVC WKERRMSG+1(L'WKERRMSG-1),WKERRMSG ERROR MSG FIELD

F-18 CA-ADS Reference

F.2 Internal structure of built-in functions

 ┌─ SPACE 1

│ SLR R2,R2 CLEAR FOR NEXT INST

│ IC R2,XDEUFUNC GET FUNCTION NUMBER

│ CLI XDEUFUNC,15 CK AGAINST MAX FUNCTION JMA9H179

│ BH EVH1NFC BIF HIGH TO ERR EXIT

│ SLL R2,2 MAKE FUNCT NBR MULTIPLE OF 4

│ B EVH1BTB1(R2) AND GO SELECT FUNCTION

 │ SPACE 1

 │EVH1BTB1 DS HH

 │ B LENGTH FUNC H

 │ B SUBSTRNG FUNC 1

 │ B INDEX FUNC 2

Branching statements ──────────────────────→ B VERIFY FUNC 3

 │ B TRANSLAT FUNC 4

 │ B CONCATEN FUNC 5

 │ B REPEAT FUNC 6

 │ B EXTRACT FUNC 7

 │ B REPLACE FUNC 8

 │ B LEFTJUS FUNC 9

 │ B RITEJUS FUNC 1H

 │ B INSERT FUNC 11

 │ B LIKE FUNC 12

 │ B GOODTRL FUNC 13

 │ B TRAILZN FUNC 14

 │ B ZNTRAIL FUNC 15

 └─

 ┌─ EJECT

│EVH1NFC DS HH NO FUNCTION EXIT

│ LA R15,4 SET ERROR CODE

│ MVC WKERRMSG(L'ERMSGH1),ERMSGH1 SET ERROR MSG

│ B EVH1RET AND GET OUT

 │ SPACE 3

 │EVH1NVAL DS HH _MCM86253_

Final processing statements────────────────→ OI VXDEFLAG,VXDEFNVL RESULT IS NON─VALUED _MCM86253_

 │ SPACE 3 _MCM86253_

 │EVH1RETH DS HH GOOD EXIT

│ SLR R15,R15 SET GOOD RETURN CODE

 │ SPACE 1

 │EVH1RET DS HH

 │ L R14,12(R13) RESTORE R14

│ LM RH,R12,2H(R13) RESTORE REGS H-12

└─ BR R14 AND RETURN TO CALLER

 ┌─ EJECT

 │__

 │_ ERROR MESSAGES _

 │__

 │ SPACE 2

│ERMSGH1 DC C'UNSUPPORTED STRING FUNCTION REQUESTED'

│ERMSGH2 DC C'INVALID OBJECT STRING LENGTH'

│ERMSGH3 DC C'INVALID START VALUE'

│ERMSGH4 DC C'INVALID LENGTH VALUE'

Error messages ────────────────────────────→ERMSGH5 DC C'STRING TO BE EXTRACTED EXCEEDS OBJECT LENGTH'

│ERMSGH6 DC C'RESULT STRING TOO SMALL TO CONTAIN SUBSTRING'

│ERMSGH7 DC C'INVALID SEARCH STRING LENGTH'

│ERMSGH8 DC C'SEARCH STRING LENGTH EXCEEDS OBJECT STRING LENGTH'

│ERMSGH9 DC C'INVALID STRING LENGTH'

│ERMSG1H DC C'RESULT STRING NOT LARGE ENOUGH'

│ERMSG11 DC C'INVALID INSERTION VALUE'

│ERMSG12 DC C'INVALID PATTERN FOR LIKE COMPARISON'

│ERMSG13 DC C'ESCAPE CHARACTER LENGTH GREATER THAN 1'

│ERMSG14 DC C'INVALID ESCAPE CHARACTER STRING'

 └─ EJECT

Appendix F. Built-in Function Support F-19

F.2 Internal structure of built-in functions

 ┌─__

 │_ _

│_ LENGTH - STRING FUNCTION TO RETURN THE LENGTH OF _

│_ A VARYING-CHARACTER FIELD. _

 │_ _

│_ ONLY REQUIRES ONE OPERAND, THE VARYING-CHAR FIELD. _

│_ THE RESULT FIELD MUST BE HALFWORD-BINARY. _

 │_ _

 │__

 │ SPACE 2

 │LENGTH DS HH

│ L R5,VXDESNXT GET ADDR OF OPERAND VXDE

│ L R6,VXDEXDEA-VXDE(,R5) AND OPERAND XDE _MCM86253_

 │ BAL R14,CHKNOVAL _MCM86254_

 │ LTR R15,R15 _MCM86254_

 │ BNZ EVH1NVAL _MCM86254_

│ L R4,VXDEDADR-VXDE(,R5) GET ADDR OF VC FLD

│ MVC WKFULL(2),H(R4) MOVE HALFWORD TO ALIGN

│ LH R4,WKFULL GET LENGTH OF FIELD

│ L R5,VXDEDADR GET ADDR OF RESULT FLD

│ STCM R4,3,H(R5) SET ANSWER -STCM FOR BS2K_MCM86H9H_

│ B EVH1RETH USE GOOD EXIT

 │ LTORG

 │ EJECT

 │__

 │_ _

│_ SUBSTRING - STRING FUNCTION TO RETURN A SPECIFIED _

│_ SUBSET OF A GIVEN STRING _

 │_ _

│_ THIS FUNCTION REQUIRES 3 OPERANDS - _

│_ 1 OBJECT STRING (VARYING-CHARACTER) _

│_ 2 START DISPLACEMENT (HALFWORD) _

│_ 3 LENGTH (OPTIONAL) (HALFWORD) _

│_ THE RESULT FIELD MUST BE VARYING-CHARACTER ALSO. _

 │_ _

│_ THE OBJECT STRING MAY NOT BE LENGTH ZERO. _

│_ IF AN ERROR IS DETECTED, THE RESULT STRING LENGTH _

Processing program ────────────────────────→_ IS SET TO ZERO, AND AN ERROR RETURNED TO RHDCEVAL. _

 │_ _

│_ REQUIREMENTS OF THE OPERANDS ARE: _

│_ K = OBJECT STRING LENGTH, I = START DISPLACEMENT, _

│_ J = LENGTH _

 │_ _

│_ H LE J LE K 1 LE I LE K _

│_ I+J-1 LE K _

 │_ _

│_ IF J IS NOT GIVEN, J = K-I+1 _

 │_ _

│_ THE OMISSION OF J (3RD OPERAND - LENGTH) IS INDICATED _

│_ BY A NON-VALUED XDE. _

 │_ _

 │__

 │ SPACE 3

 │SUBSTRNG DS HH

│_ NOTE : SUBSTRING OP3 IS AN OPTIONAL PARAMETER. 4_

F-20 CA-ADS Reference

F.2 Internal structure of built-in functions

│_ MUST DIFFERENTIATE BETWEEN OP3 OMITTED 4_

│_ AND OP3 SPECIFIED BUT NON-VALUED. 4_

│ L R5,VXDESNXT BACK UP TO OP3 VXDE

 │ L R6,VXDEXDEA-VXDE(,R5) AND XDE

│ TM VXDEFLAG-VXDE(R5),VXDEFNVL IF OP3 VXDE NON-VA _MCM8626H_

│ BO EVH1NVAL THEN SO IS RESULT _MCM8626H_

│ TM XDEFLAG-XDE(R6),XDEFNVL IF OP3 XDE NON-VAL _MCM8626H_

│ BO SUBSHH1H THEN CHK FURTHER _MCM8626H_

│ B SUBSHH4H CONTINUE WITH OP2 _MCM8626H_

 │ SPACE 1 _MCM8626H_

 │SUBSHH1H DS HH _MCM8626H_

 │ CLC XDEDATAD-XDE(,R6),=X'8HHHHHHH' OP3 OMIITED?_MCM8626H_

│ BE SUBSHH4H YES - CONTINUE _MCM8626H_

│ B EVH1NVAL NO - OP3 NON-VALUED _MCM8626H_

 │ SPACE 1 _MCM8626H_

 │SUBSHH4H DS HH _MCM8626H_

│ STM R5,R6,WKOP3SV SAVE OP3 XDE,VXDE _MCM8626H_

│ L R5,VXDESNXT-VXDE(,R5) BACK UP TO OP2 VXDE

 │ L R6,VXDEXDEA-VXDE(,R5) AND XDE

 │ BAL R14,CHKNOVAL

 │ _MCM86254_

 │ LTR R15,R15

 │ _MCM86254_

 │ BNZ EVH1NVAL

 │ _MCM86254_

│ STM R5,R6,WKOP2SV SAVE OP2 XDE,VXDE

 │ _MCM86253_

 │ SPACE 1

│ L R5,VXDESNXT-VXDE(,R5) BACK UP TO OP1 VXDE

 │ L R6,VXDEXDEA-VXDE(,R5) AND XDE

 │ BAL R14,CHKNOVAL

 │ _MCM86254_

 │ LTR R15,R15

 │ _MCM86254_

 │ BNZ EVH1NVAL

 │ _MCM86254_

│ STM R5,R6,WKOP1SV SAVE OP1 XDE,VXDE

 │ _MCM86253_

 │ EJECT

Processing program (cont'd)────────────────→_______ OBJECT STRING LENGTH MUST BE GREATER THAN ZERO __________

│ L R4,VXDEDADR-VXDE(,R5) GET OP1 DATA ADDR

│ MVC WKFULL,H(R4) GET HALFWORD LNG FROM VC FLD

│ LH R4,WKFULL PUT INTO A REGISTER

│ LTR R4,R4 CK IT FOR ZERO

│ BP SUBSHH5H GTR ZERO IS OKAY - BRANCH

 │ SPACE 1

│ MVC WKERRMSG(L'ERMSGH2),ERMSGH2 SET ERROR MSG

│ B SUBSH95H USE ERROR EXIT

 │ SPACE 1

│SUBSHH5 DS HH R4 NOW CONTAINS LENGTH OF OBJECT STRING

│_______ CHECK STARTING DISPLACEMENT _____________

│ LM R7,R8,WKOP2SV GET VXDE/XDE ADDRS, OP2

│ L R3,VXDEDADR GET OP2 DATA ADDR

│ MVC WKFULL,H(R3) GET HALFWORD DATA FIELD

│ LH R3,WKFULL GET THE VALUE

│ LTR R3,R3 CK FOR ZERO OR LESS

│ BP SUBSHH8H IF POSITIVE, BRANCH

 │ SPACE 1

Appendix F. Built-in Function Support F-21

F.2 Internal structure of built-in functions

│SUBSHH75 DS HH INVALID START FIELD

│ MVC WKERRMSG(L'ERMSGH3),ERMSGH3 SET ERROR MSG

│ B SUBSH95H USE ERROR EXIT

 │ SPACE 1

 │SUBSHH8H DS HH

│ CR R3,R4 COMPARE TO MAX START

│ BH SUBSHH75 ERR IF START GTR LENGTH

 │ SPACE 1

Processing program (cont'd)────────────────→________ R3 NOW HAS STARTING DISPLACEMENT RELATIVE TO ONE ________

│________ NOW GET EXTRACT LENGTH, WHICH MIGHT HAVE BEEN OMITTED ___

│ LM R7,R8,WKOP3SV GET VXDE/XDE ADDRS

│ TM XDEFLAG,XDEFNVL CK FOR PARMETER OMITTED

│ BZ SUBSHH9H BIF IT IS PRESENT

 │ SPACE 1

 │SUBSHH85 DS HH

 │ LR R2,R4 ELSE SET

│ SR R2,R3 EXTRACT LNG TO

 │ LA R2,1(,R2) TOTAL-START+1

│ B SUBSH12H AND BYPASS NEXT EDIT

 │ SPACE 1

 │SUBSHH9H DS HH

│ L R2,VXDEDADR GET DATA ADDR, OP3

│ MVC WKFULL,H(R2) GET HALFWORD LENGTH

│ LH R2,WKFULL PUT INTO A REGISTER

│ LTR R2,R2 CK FOR ZERO OR LESS

│ BZ SUBSHH85 ZERO - TAKE DEFAULT ABOVE

│ BP SUBSH1HH POSITIVE IS OKAY - BRANCH

 │ SPACE 1

│SUBSHH95 DS HH INVALID LENGTH FIELD

│ MVC WKERRMSG(L'ERMSGH4),ERMSGH4 SET ERROR MESSAGE

│ B SUBSH95H USE ERROR EXIT

 │ SPACE 1

 │SUBSH1HH DS HH

│ CR R2,R4 MUST BE LESS THAN OBJECT-LNG

│ BH SUBSHH95 IF NOT, ERROR

 │ EJECT

 │SUBSH12H DS HH

│________ INSURE START + EXTRACT LNG DOESN'T EXCEED OBJECT STRING

 │LNG__

│ LR R1,R3 GET START DISPLACEMENT

│ AR R1,R2 ADD EXTRACT LENGTH

│ BCTR R1,H DECREMENT BY ONE

│ CR R1,R4 COMPARE TO TOTAL AVAIL

│ BNH SUBSH14H EQ OR LOW IS OKAY - BRANCH

 │ SPACE 1

│ MVC WKERRMSG(L'ERMSGH5),ERMSGH5 SET ERROR MESSAGE

│ B SUBSH95H USE ERROR EXIT

 │ SPACE 1

F-22 CA-ADS Reference

F.2 Internal structure of built-in functions

 │SUBSH14H DS HH

│________ R4 HAS TOTAL STRING LENGTH OF OBJECT ________

│________ R3 HAS DISPLACEMENT TO START OF EXTRACT ________

│________ R2 HAS LENGTH TO EXTRACT ________

│________ MUST NOW TEST RESULT FIELD SIZE TO INSURE IT CAN ________

│________ CONTAIN THE EXTRACTED SUBSTRING ________

 │ SPACE 1

│ LM R7,R8,WKRESADR GET VXDE/XDE ADDRS OF RESULT

│ LH R5,XDEDATLN GET MAX RESULT SIZE

│ CR R2,R5 EXTRACT LNG CAN'T EXCEED TARG LEN

│ BNH SUBSH15H BRANCH IF OKAY

 │ SPACE 1

│ MVC WKERRMSG(L'ERMSGH6),ERMSGH6 SET ERROR MESSAGE

│ B SUBSH95H USE ERROR EXIT

 │ SPACE 1

│SUBSH15H DS HH NOW READY TO EXTRACT THE SUBSTRING

│ L R5,VXDEDADR GET RESULT FLD ADDR

│ STH R2,WKFULL ALIGN THE SUBSTRING LENGTH

│ MVC H(2,R5),WKFULL PUT LENGTH FIELD INTO RESULT (VC)

│ LA R5,2(,R5) AND ADVANCE RESULT FIELD POINTER

Processing program (cont'd)────────────────→ SPACE 1

│ L R6,WKOP1SV GET VXDE ADDR OBJECT STRING

│ L R6,VXDEDADR-VXDE(,R6) GET DATA ADDR

│ LA R6,2(,R6) BUMP PAST LENGTH FIELD

│ BCTR R3,H MAKE START RELATIVE TO ZERO

│ AR R6,R3 CALC ADDR OF SUBSTRING

 │ SPACE 1

│ LR R4,R2 GET LENGTH IN RIGHT REGISTER

│ BAL R14,MOVEIT MOVE THE SUBSTRING

│ B SUBSH98H AND USE SUCCESS EXIT

 │ EJECT

 │SUBSH95H DS HH ERROR EXIT

│ LM R7,R8,WKRESADR GET RESULT VXDE/XDE ADDRS

│ L R6,VXDEDADR GET DATA FIELD ADDR

│ XC H(2,R6),H(R6) SET LNG TO NULL

│ LA R15,4 SET ERROR RETURN CODE

│ B EVH1RET AND USE ERROR EXIT

 │ SPACE 2

 │SUBSH98H DS HH SUCCESS EXIT

│ B EVH1RETH USE GOOD EXIT

 │ LTORG

 │ EJECT

 └─

Appendix F. Built-in Function Support F-23

F.2 Internal structure of built-in functions

 ┌─

 │___

 │_

 │_

 │_

│_ WORKAREA — PASSED BY CALLER

 │_

 │_

 │_

 │___

 │_

 │ SPACE 2

 │WORKAREA DSECT

 │WKERRMSG DS CL8H

 │WKFULL DS F

 │ ORG WKFULL

│WKHALF DS H _THIS CAN'T BE USED WITH WKFULL !!

 │WKFLAG1 DS CL1 WORK FLAG1

│WKF1ASTR EQU X'8H' GOT ME AN ARBITRARY STRING WORKING

│WKF1OP3O EQU X'4H' ESCAPE CHAR IN REQUEST

│WKF1OP3S EQU X'2H' ESCAPE CHAR ENCOUNTERED

│WKF1FX1H EQU X'1H' X'1H' BIT FOR FLAG1

│WKF1PON EQU X'H8' PROCESSING % OPERATOR

│WKF1PSET EQU X'H4' 1ST CHAR IN % STR MATCHED IN OBJ

Work area storage definition────────────────→WKF1FXH2 EQU X'H2' X'H2' BIT FOR FLAG1

│WKF1FXH1 EQU X'H1' X'H1' BIT FOR FLAG1

 │WKFLAG2 DS CL1 WORK FLAG2

│WKRESADR DS 2F VXDE/XDE ADDRS, RESULT FIELD

 │WKRSLADR DS F RESULT ADDR

 │WKRSLLNG DS F RESULT LENGTH

│WKOP1SV DS 2F VXDE/XDE ADDRS, OPERAND 1 FIELD

│WKOP2SV DS 2F VXDE/XDE ADDRS, OPERAND 2 FIELD

 │ ORG WKOP2SV

│WKPATCNT DS F STARTING COUNT FOR % PATTERN

│WKPATADR DS F STARTING POSITION FOR % PATTERN

│WKOP3SV DS 2F VXDE/XDE ADDRS, OPERAND 3 FIELD

 │ ORG WKOP3SV

│WKOBJCNT DS F STARTING COUNT FOR % PATTERN

│WKOBJADR DS F STARTING POSITION FOR % PATTERN

│WKOP1LNG DS F OPERAND 1 LENGTH

│WKOP2LNG DS F OPERAND 2 LENGTH

│WKOP3LNG DS F OPERAND 3 LENGTH

│WKOP1ADR DS F OPERAND 1 ADDRESS

│WKOP2ADR DS F OPERAND 2 ADDRESS

│WKOP3ADR DS F OPERAND 3 ADDRESS

 │ SPACE 2

│WKLENGTH EQU _-WORKAREA LENGTH OF WORKAREA

 │ EJECT

 │ COPY #XDEDS

 │ END EVH1EP1

 └─

F.2.5 Runtime processing of built-in functions

At runtime, the following processing sequence occurs for each function:

1. The runtime system begins processing the function, as follows:

■ Moves each parameter in the function to an intermediate result area (IRA). If
a parameter is coded as a multi-operand expression, the expression is
evaluated and only the result is moved to the IRA. Data conversions are
performed as necessary.

The runtime system maintains an operand XDE/VXDE for each function
parameter. The XDE/VXDE pair describes the parameter as it is stored in the
IRA and contains the parameter's IRA address.

�� For details on processing optional parameters, see F.5.1, “Steps for
generating a user-defined built-in function” later in this appendix.

F-24 CA-ADS Reference

F.2 Internal structure of built-in functions

■ Passes control to the processing program module named in the function XDE.
The runtime system places in register 1 the address of the function VXDE.
(A function VXDE contains addresses that enable access to the work area, the
result field in the IRA, and the function's operand XDEs/VXDEs.)

2. The processing program continues processing the function, as follows:

■ Processes initialization statements, as illustrated earlier in this appendix.
Register information is saved by using standard OS/390 conventions. Register
1 is used to access the function VXDE, which in turn enables access to all the
information required for processing the function, as illustrated below.

■ Branches to the appropriate program by using a branching routine in
conjunction with the XDEUFUNC field of the function XDE.

■ Processes the program statements.

■ Processes final statements. If the program did not encounter an error
condition, register 15 is set to 0. If an error was encountered, register 15 is
set to a nonzero value and an optional error message is moved to the first 80
bytes of the work area. Registers are restored and the module passes control
back to the runtime system.

3. The runtime system finishes processing the function by checking the value
returned in register 15. If register 15 equals 0, the runtime system resumes the
process. The result of the function is used in the statement in which the function
is coded. If register 15 is greater than 0, the runtime system aborts the dialog and
displays the Dialog Abort Information screen along with the optional error
message.

Internal representation of a function at run time: The internal representation
of a substring function is illustrated below.

An arrow indicates that the source structure contains the address of the object
structure, illustrating that the processing program module can use register 1 to gain
access to all required information.

Field names containing the addresses are listed next to the arrows.

Appendix F. Built-in Function Support F-25

F.2 Internal structure of built-in functions

 SUBSTRING(EMP-NAME, START-POS-1)

 XDEs VXDEs INTERMEDIATE RESULT AREA

┌───────────────┐ ┌───────────────┐ ┌─────────────────────┐

│Operand XDE │ VXDEXDEA │Operand VXDE │ VXDEDADR │ │

│for first ←──────────┤for first ├────────────→ │First parameter │ │

│parameter │ │parameter │ │ └────────────────┘ │

│(EMP-NAME) │ │(EMP-NAME) │ │ │

└───────────────┘ └───────────────┘ │ │

↑ ┌──→ │Second parameter│ │

│ VXDESNXT │ │ └────────────────┘ │

┌───────────────┐ ┌──────┴────────┐ │ │ │

│Operand XDE │ VXDEXDEA │Operand VXDE │ VXDEDADR│ │ │

│for second ←──────────┤for second ├─────────┘ │ │

│parameter │ │parameter │ ┌──→ │Result field │ │

│(START-POS-1) │ │(START-POS-1) │ │ │ └────────────────┘ │

└───────────────┘ └───────────────┘ │ └─────────────────────┘

 ↑ │

 │ VXDESNXT │

┌───────────────┐ ┌──────┴────────┐ │

│Dummy operand │ VXDEXDEA │Dummy operand │ │

│XDE for omitted←──────────┤VXDE for omit─ │ │

│third parameter│ │ted third │ │

└───────────────┘ │parameter │ │

 └───────────────┘ │

 ↑ │

 │ VXDESNXT │

┌───────────────┐ ┌──────┴────────┐ VXDEDADR│ ┌───────────────────┐

│Function XDE │ VXDEXDEA │Function VXDE ├─────────┘ │ │

│for substring ←──────────┤for substring ├────────────→ WORK AREA │

│function │ │function │ VXDEUWKA │ │

└───────────────┘ └───────────────┘ └───────────────────┘

 ↑

 │

 ┌──────┴────────┐

 │ Register 1 │

 │ │

 └───────────────┘

F-26 CA-ADS Reference

F.3 Assembler macros

 F.3 Assembler macros

Assembler macros (#EFUNMST and #EFUNMOD) are used in assembler programs to
define the master function table and the model XDE modules. The programs are
assembled to create object modules. The object module for the master function table
is then placed in the data dictionary load area by using the DDDL compiler. The
object module for a model XDE module is placed in the load library by using the
linkage editor.

The macros #EFUNMST and #EFUNMOD are discussed separately below.

 F.3.1 #EFUNMST

Purpose: Defines the master function table. Three types of #EFUNMST macros are
coded in a source assembler program, as follows:

 Syntax:

��────── #EFUNMST TYPE = ───┬─ INITIAL ───────────────────────────────────────�─

├─ FINAL ───

└─ ENTRY, INVOKE = invocation-name ── , ──────────

─�──�

──

────── FUNCT = ──┬─ function-name ─┬── , ──────────────────────────────────

└─ _ ──────────────┘

─�──┬─��

 ──┤

── PROGRAM = ──┬─ model-xde-module ──┬──────────────────────────────┬─┬───┘

│ └─ , VERSION = version-number ─┘ │

└─ _ ──┘

 Parameters

INITIAL
Generates header information and automatically generates the #EFUNMST
TYPE=ENTRY macros for the CA-ADS supplied built-in functions.

TYPE=INITIAL is coded first and only once in the assembler program.

FINAL
Defines the end of the table.

ENTRY
Generates an entry in the master function table.

TYPE=ENTRY macros are coded once for each entry in the table.

INVOKE= invocation-name
Specifies a user-defined, 1- to 32-character invocation name for the function.

FUNCT= function-name/*
Specifies a user-defined, 1- to 8-character real (generic) function name for the
function.

Appendix F. Built-in Function Support F-27

F.3 Assembler macros

This function name is used to associate the coded invocation name with the model
XDE table that describes the function in the model XDE module. The character
* can be specified if the real function name is the same as the real function name
for the previous entry in the master function table.

PROGRAM= model-xde-module
Specifies the 1- to 8-character name of the model XDE module in which the
function is described.

,VERSION= version-number
Specifies the 1- to 4-digit version number of the model XDE module in which the
function is described.

*
The character * can be specified if the model XDE module name is the same as
the model XDE module name for the previous entry in the master function table
(see RHDCEVBF below).

 Usage:

 Considerations

■ A source module must begin with one TYPE=INITIAL macro and end with one
TYPE=FINAL macro.

■ Any number of TYPE=ENTRY macros can be coded between the INITIAL and
FINAL type macros.

 F.3.2 RHDCEVBF

The master function table is defined in a source assembler program called
RHDCEVBF. RHDCEVBF is shown below as it appears when CA-ADS is installed.
Entries for user-defined functions are defined by coding #EFUNMST TYPE=ENTRY
macros between the INITIAL and FINAL type macros.

�� For more information, see F.4, “Changing invocation names” later in this appendix.

Source assembler program RHDCEVBF

RHDCEVBF TITLE 'EVAL - BUILT-IN FUNCTIONS - MASTER TABLE'

_ RHDCEVBF EP=RHDCEVBF H6/25/9H 14:52:5H

 #EFUNMST TYPE=INITIAL 12/H8/88 15:52:14

 EJECT

 #EFUNMST TYPE=FINAL

 END

The TYPE=INITIAL macro automatically generates the entries for the CA-ADS
supplied built-in functions. It does this by copying the TYPE=ENTRY macros coded
in the source module #EFMBIFS. A segment of source module #EFMBIFS is shown
below. Invocation names for the CA-ADS supplied built-in functions can be changed

F-28 CA-ADS Reference

F.3 Assembler macros

by modifying the source module #EFMBIFS, as described under 'Changing Invocation
Names' later in this appendix.

Appendix F. Built-in Function Support F-29

F.3 Assembler macros

Segment of source module #EFMBIFS

_ #EFMBIFS EVAL BUILT-IN FUNCTIONS - MASTER DEFS

________ FUNCTION = LENGTH (STRING FUNCTION) ___________________

 SPACE 2

____ INVOCATION NAME = SLENGTH ____

 #EFUNMST TYPE=ENTRY, X

 INVOKE=SLENGTH, X

 FUNCT=LENGTH, X

 PROGRAM=RHDCEV51

 SPACE 2

____ INVOCATION NAME = STRING-LENGTH ____

 #EFUNMST TYPE=ENTRY, X

 INVOKE=STRING-LENGTH, X

 FUNCT=_, X

 PROGRAM=_

 SPACE 2

____ INVOCATION NAME = SLEN ____

 #EFUNMST TYPE=ENTRY, X

 INVOKE=SLEN, X

 FUNCT=_, X

 PROGRAM=_

 EJECT

________ FUNCTION = SUBSTRING (STRING FUNCTION) _________________

 SPACE 2

____ INVOCATION NAME = SUBSTRING ____

 #EFUNMST TYPE=ENTRY, X

 INVOKE=SUBSTRING, X

 FUNCT=SUBSTRNG, X

 PROGRAM=RHDCEV51

 SPACE 2

____ INVOCATION NAME = SUB-STRING ____

 #EFUNMST TYPE=ENTRY, X

 INVOKE=SUBSTR, X

 FUNCT=_, X

 PROGRAM=_

 SPACE 2

____ INVOCATION NAME = SUBS ____

 #EFUNMST TYPE=ENTRY, X

 INVOKE=SUBS, X

 FUNCT=_, X

 PROGRAM=_

 EJECT

________ FUNCTION = INDEX (STRING FUNCTION) ____________________

 SPACE 2

____ INVOCATION NAME = INDEX ____

 #EFUNMST TYPE=ENTRY, X

 INVOKE=INDEX, X

 FUNCT=INDEX, X

 PROGRAM=RHDCEV51

 SPACE 2

____ INVOCATION NAME = STRING-INDEX ____

 #EFUNMST TYPE=ENTRY, X

 INVOKE=STRING-INDEX, X

 FUNCT=_, X

 PROGRAM=_

 SPACE 2

____ INVOCATION NAME = INDX ____

 #EFUNMST TYPE=ENTRY, X

 INVOKE=INDX, X

 FUNCT=_, X

 PROGRAM=_

F-30 CA-ADS Reference

F.3 Assembler macros

 F.3.3 #EFUNMOD

Purpose: Defines a model XDE module and the model XDE tables within the
module.

Each model XDE table describes one function. During process compilation of a
built-in function, the dialog compiler uses the appropriate model XDE table to convert
the built-in function into a series of XDEs, which represents the function at runtime.

 Syntax:

��─── #EFUNMOD TYPE = ──┬─ INITIAL, NAME = model-xde-module-name ────┬────────��

 │ │

├─ HDR, hdr-options──────────────────────────┤
 │ │

├─ XDE, DECS = decimal-options ──────────────┤
 │ │

├─ DATA, CONV = (conv-options) ────────────┤
 │ │

└─ FINAL ────────────────────────────────────┘

Expansion of hdr-options

��─── FUNCNAM = function-name ── , ───�

 �─── PROGRAM = processing-program-name ── , ─────────────────────────────────�

 �─── FUNCNBR = function-number ── , ───�

 �─── WORKLNG = work-area-length ── , ──�

 �─── FIXOPND = fixed-operands-count ── , ────────────────────────────────────�

 �─┬─────────────────────────────┬──�

└─ VAROPND = ─┬─ YES ──┬── , ─┘

└─ NO ← ─┘

 �─── RESLNG = ──┬─ CALC────────────┬── , ────────────────────────────────────�

├─ OPND ───────────┤

└─ result-length ──┘

 �─── RESDATP = ──┬─ OPND ───────┬── , ───────────────────────────────────────�

└─ data-type ──┘

 �─── RESDEC = ───┬─ OPND ──────────────────┬─────────────────────────────────��

└─ result-decimal-places ─┘

Expansion of decimal-options

��─┬─ SOURCE ─────────┬─ , ────────┬────────────────────────┬─────────────────�

└─ decimal-places ─┘ └─ OPT = ─┬─ YES ──┬─ , ─┘

└─ NO ← ─┘

 �─┬──────────────────────────┬────┬───────────────────────────┬──────────────�

└─ ROUND = ─┬─ YES ← ─┬ , ─┘ └─ RESLCAL = ─┬─ ADD ──┬ , ─┘

└─ NO ────┘ └─ SUBT ─┘

 �─┬────────────────────────┬───��

└─ RESDEFL = ─┬─ YES ──┬─┘

└─ NO ← ─┘

Appendix F. Built-in Function Support F-31

F.3 Assembler macros

Expansion of source-specification

��─── source-data-type ── , ─┬─ SOURCE ───────────┬─┬──────────────────┬──────��

└─ target-data-type ─┘ ├─ ,SOURCE ────────┤

└─ ,target-length ─┘

 Parameters

INITIAL, NAME = model-xde-module-name
Specifies the 1- to 8-character model XDE module name.

The TYPE=INITIAL macro is coded first and only once in the assembler program.

HDR, hdr-options
Defines the beginning of a model XDE table and specifies function XDE
information.

One TYPE=HDR macro is coded for each model XDE table.

See expansion of hdr-options below.

XDE, DECS = decimal-options
Specifies operand XDE information that describes a target parameter.

The TYPE=XDE macro describes a function parameter. One TYPE=XDE macro
is coded for each parameter in the order that the parameter is to appear in the
parameter list.

DECS = decimal-options is used to specify the number of decimal places in the
target parameter being described.

See the expansion of decimal-options below.

DATA, CONV = (conv-options)
Specifies the data type and length of the target parameter (that is, the parameter as
it is stored in the IRA for use by the processing program), based on the data type
of the source parameter (that is, the parameter as it is coded in the parameter list).

See expansion of conv-options below.

At least one TYPE=DATA macro must be coded following a TYPE=XDE macro.
If two or more are specified, the dialog compiler uses the TYPE=DATA macro
whose source-data-type specification matches the data type of the source
parameter. If no source-data-type specification matches, the last TYPE=DATA
macro is used.

Note that during process compilation, any combination of source and target
parameter data types is accepted. At runtime, the runtime system attempts to
make any required data type conversions; if it cannot, the dialog aborts.

�� For more information about data type conversion, see Chapter 5, “Introduction
to Process Language.”

FINAL
Defines the end of the model XDE module.

F-32 CA-ADS Reference

F.3 Assembler macros

Expansion of hdr-options

FUNCNAM= function-name
User-defined parameter specifying the 1- to 8-character real (generic) function
name.

The real function name associates a master function table entry with the model
XDE table.

PROGRAM= processing-program-name
User-defined parameters specifying the 1- to 8-character name of the processing
program module that contains the processing program for the function.

FUNCNBR= function-number
User-supplied numeric literal specifying a number from 0 to 255 that uniquely
identifies the associated processing program within the processing program
module.

WORKLNG= work-area-length
User-supplied numeric literal specifying the number of bytes of work area required
by the processing program module for the function.

The WORKLNG specification should not include work space required by the
runtime system, which is automatically added by the macro.

Note: Work-area-length must be at least 80.

FIXOPND= fixed-operands-count
User-supplied numeric literal specifying the number of fixed parameters for the
function.

A fixed parameter is a parameter that can be specified only once in a parameter
list. A function can have from 0 to 50 fixed parameters.

VAROPND=YES/NO
Specifies whether one parameter in the parameter list is variable.

A variable parameter can be specified repeatedly in a parameter list. (An example
of a variable parameter is 'string' or string-variable in the concatenate function.)

A function can have only one variable parameter and it must follow all fixed
parameters.

The default VAROPND specification is NO.

RESLNG=
Clause introducing the length, in bytes, of the function's result field,

CALC
Specifies that the result field length is calculated from the lengths of the
function parameters, based on the RESLNG specification of each parameter's
TYPE=XDE macro.

If CALC is specified, the result field length is calculated as the sum of the
lengths of the function parameters whose RESLNG specification is ADD,
minus the sum of the lengths of the function parameters whose RESLNG

Appendix F. Built-in Function Support F-33

F.3 Assembler macros

specification is SUBT. Parameters without a RESLNG specification are not
included in the calculation.

OPND
Specifies that the result length is equal to the length of the function parameter
whose RESDEFL specification is YES.

result-length
Specifies a result length, in bytes, from 1 to 32767.

RESDATP=
Clause introducing the data type of the function's result field of the function.

OPND
Specifies that the result data type is the same as the data type of the function
parameter whose RESDEFL specification is YES.

data-type
User-defined parameter specifying the result field data type.

Data-type is one of the three-character data type abbreviations shown in the
table under Usage below.

RESDEC=
Clause introducing the number of decimal places in the function's result field.

OPND
Specifies that the number of decimal places is equal to the number of decimal
places in the function parameter whose RESDEFL specification is YES.

result-decimal-places
Specifies the number of result decimal places, from 0 to 32.

Expansion of decimal-options

SOURCE
Specifies that the number of decimal places equals the number of decimal places
in the source parameter.

decimal-places
Specifies the number of decimal places, from 0 to 32.

OPT=YES/NO
Specifies whether the parameter is optional and can be omitted from the coded
parameter list.

NO is the default when neither YES or NO is specified.

ROUND=YES/NO
Specifies whether rounding or truncation is used when converting from the source
parameter to the target parameter. NO indicates truncation.

YES is the default when neither YES or NO is specified.

RESLCAL=
Clause introducing the action to be taken to the parameters length in the
calculation of the length of the result field.

F-34 CA-ADS Reference

F.3 Assembler macros

ADD
Specifies that the parameter's length is added in the calculation of the length
of the result field.

SUBT
Specifies that the parameter's length is subtracted in the calculation of the
length of the result field.

The RESLCAL specification should be included only if the RESLNG
specification of the preceding TYPE=HDR macro is CALC. If the RESLCAL
specification is omitted, the parameter's length is not considered in the
calculation of the length of the result field.

RESDEFL=YES/NO
Specifies whether the parameter is used to determine result field characteristics
that are specified in the associated TYPE=HDR macro as OPND.

Only one TYPE=XDE macro for a function can specify RESDEFL=YES.

The default RESDEFL specification is NO.

Expansion of conv-options

source-data-type
User-defined parameters specifying the three-character abbreviation of the data
type of the source parameter; these abbreviations are listed in the table under
Usage below.

During process compilation, if the data type of the source parameter is
source-data-type, then the target parameter is assigned a data type of
SOURCE/target-data-type and a length of SOURCE/target-length. The target
parameter's data type and length are stored in the parameter's operand XDE.

SOURCE
Specifies that the data type of the target parameter is the same as the data type of
the source parameter.

target-data-type
User-defined parameters specifying the three-character abbreviation of the data
type of the target parameter; these abbreviations are listed in the table under
Usage below.

SOURCE
Specifies that the length of the target parameters is the same as the length of the
source parameter.

target-length
Specifies the length of the target parameter in bytes.

If neither is specified, a length is generated based on the data type of the target
parameter, if possible.

 Usage:

Appendix F. Built-in Function Support F-35

F.3 Assembler macros

 Considerations

■ The source assembler program must begin with one TYPE=INITIAL macro and
end with one TYPE=FINAL macro.

■ One TYPE=HDR macro is coded for each function that is described in the
module.

■ One TYPE=XDE macro is coded for each parameter of each function; the macro
applies to the function described by the preceding TYPE=HDR macro and is
coded in the order that the parameter is to appear in the parameter list.

■ One or more TYPE=DATA macros are coded for each data type conversion
specification for each parameter; the macro applies to the parameter described by
the preceding TYPE=XDE macro.

Data type abbreviations

Note: Only target parameters and the result field can have the varying character data
type. A varying character field consists of a halfword binary field that
specifies the length of the varying character string, followed by a fixed field
that contains the string itself.

Model XDE modules: The model XDE modules for the CA-ADS supplied built-in
functions are defined by the source assembler programs called RHDCEV51,
RHDCEV52, and RHDCEV53. Segments of RHDCEV51 are shown below. An

Data type Abbreviation

Display floating point DFL

Doubleword binary DWB

EBCDIC EBD

Fullword binary FWB

Group GRP

Halfword binary HWB

Long floating point LFL

Multibit binary MBB

Short floating point SFL

Signed packed decimal SPK

Signed zoned decimal SZN

Unsigned packed decimal UPK

Unsigned zoned decimal UZN

Varying character VCH

F-36 CA-ADS Reference

F.3 Assembler macros

installation should not change these modules, but can reference them as guides for
creating user-defined built-in functions.

�� For more information, F.5, “Creating user-defined built-in functions” later in this
appendix.

Appendix F. Built-in Function Support F-37

F.3 Assembler macros

Segments of source assembler program RHDCEV51

RHDCEV51 TITLE 'EVAL - BUILT-IN STRING FUNCTIONS - MODEL XDE TBL'

_ RHDCEV51 EP=RHDCEV51 H6/29/9H 14:H5:4H

 SPACE 3

RHDCEV51 AMODE ANY

RHDCEV51 RMODE 24

 #EFUNMOD TYPE=INITIAL,NAME=RHDCEV51

 EJECT

__

_ FUNCTION = LENGTH _

__

 SPACE 3

LENGTH #EFUNMOD TYPE=HDR, X

 FUNCNAM=LENGTH, X

 FUNCNBR=H, X

 PROGRAM=RHDCEVH1, X

 WORKLNG=148, X

 FIXOPND=1, X

 RESLNG=2, X

 RESDATP=HWB, X

 RESDEC=H

 SPACE 1

 #EFUNMOD TYPE=XDE,DECS=H,OPT=NO

 SPACE 1

 #EFUNMOD TYPE=DATA,CONV=(EBD,VCH,SOURCE)

 EJECT

F-38 CA-ADS Reference

F.3 Assembler macros

__

_ FUNCTION = SUBSTRING _

__

 SPACE 3

SUBSTRNG #EFUNMOD TYPE=HDR, X

 FUNCNAM=SUBSTRNG, X

 FUNCNBR=1, X

 PROGRAM=RHDCEVH1, X

 WORKLNG=148, X

 FIXOPND=3, X

 RESLNG=CALC, X

 RESDATP=VCH, X

 RESDEC=H

 SPACE 1

 #EFUNMOD TYPE=XDE,DECS=H,OPT=NO,RESLCAL=ADD

 SPACE 1

 #EFUNMOD TYPE=DATA,CONV=(EBD,VCH,SOURCE)

 SPACE 1

 #EFUNMOD TYPE=XDE,DECS=H,OPT=NO

 SPACE 1

 #EFUNMOD TYPE=DATA,CONV=(EBD,HWB,2)

 SPACE 1

 #EFUNMOD TYPE=XDE,DECS=H,OPT=YES

 SPACE 1

 #EFUNMOD TYPE=DATA,CONV=(EBD,HWB,2)

 EJECT

 ...

 #EFUNMOD TYPE=FINAL

 SPACE 2

 END RHDCEV51 _CRM84199_

Appendix F. Built-in Function Support F-39

F.3 Assembler macros

F.4 Changing invocation names

An installation can add, modify, or delete any invocation name for any CA-ADS
supplied or user-defined built-in function. The following steps update the master
function table, which contains the valid invocation names:

1. Modify source macro #EFMBIFS — #EFMBIFS contains the assembler macros
that define the entries in the master function table for the CA-ADS supplied
built-in functions. Invocation names can be changed by adding, modifying, and/or
deleting the appropriate #EFUNMST macros in #EFMBIFS, then following the
steps listed below. Refer to the syntax rules for the #EFUNMST macro earlier in
this appendix.

2. Modify source module RHDCEVBF — RHDCEVBF contains the #EFUNMST
assembler macros that define the master function table, including the
TYPE=INITIAL macro, which automatically generates the macros stored in
#EFMBIFS.

Invocation names for user-defined functions are defined by TYPE=ENTRY
macros coded between the TYPE=INITIAL and TYPE=FINAL macros in
RHDCEVBF. TYPE=ENTRY macros can be added, modified, and deleted as
required.

RHDCEVBF also contains PUNCH statements that prefix the module with the
required IDD statement to place the master function table in the data dictionary
load area. Change the action ADD to MOD if it has not already been changed.

3. Assemble source module RHDCEVBF — The object module generated should
also be called RHDCEVBF.

4. Place RHDCEVBF in the data dictionary load area — Use the DDDL
compiler.

�� JCL for the DDDL compiler is presented in IDD DDDL Reference.

F-40 CA-ADS Reference

F.5 Creating user-defined built-in functions

F.5 Creating user-defined built-in functions

Built-in functions can be created to meet site-specific needs. User-defined built-in
functions are coded like the CA-ADS supplied functions.

The following topics are discussed below:

■ Steps for generating a user-defined built-in function

 ■ LRF Considerations

■ Calling a user-defined built-in function

F.5.1 Steps for generating a user-defined built-in function

An installation can generate a user-defined function by following the instructions listed
below in any order:

■ Create a processing program module, as follows:

1. Create the source module — As a guide, refer to the source module
RHDCEV01 which contains some of the source code for the CA-ADS
supplied built-in functions.

Processing logic for several functions can be included in one processing
program module, thereby reducing the number of modules that must be loaded
at runtime. Each function is distinguished by a unique function number. The
function number is defined in the model XDE module by the FUNCNBR
parameter of the #EFUNMOD TYPE=HDR macro. At runtime, the function
number is contained in the XDEUFUNC field of the function XDE, and can
be used by the processing program module to branch to the appropriate
processing program.

Note: A built-in function that supports entry of optional parameters must be
able to determine at execution time whether the optional parameters
have been entered. To do this, the built-in function must perform a
runtime check of the XDE/VXDE for each such parameter.

If an optional parameter is omitted, the runtime system passes a
dummy operand VDE/VXDE to the built-in function for the omitted
parameter. The dummy XDE/VXDE for the parameter has the
following characteristics, for which a built-in function can test:

– The XDEFNVL bit in the XDEFLAG field is set to 1.

– The XDEDATAD field is set to X'80000000'.

2. Assemble the processing program source module.

3. Link edit the module into the load library.

4. Add the program at system generation with the PROGRAM statement.

�� For information about linking built-in functions with the runtime system,
see Chapter 4, “CA-ADS Runtime System.”

Appendix F. Built-in Function Support F-41

F.5 Creating user-defined built-in functions

■ Create a model XDE module, as follows:

1. Create the source module — The source module consists of #EFUNMOD
macros. As a guide, refer to RHDCEV51, RHDCEV52, RHDCEV53,
RHDCEV59, and RHDCEV60, the model XDE source modules for the
CA-ADS supplied built-in functions.

2. Assemble the source module.

3. Link edit the module into the load library.

■ Update the master function table by following the steps described under F.4,
“Changing invocation names” earlier in this appendix.

F.5.2 LRF considerations for user-defined built-in functions

If a site-defined built-in function is used with the Logical Record Facility (LRF)
WHERE clause, the function must check each parameter to determine if the record
containing the parameter value has been read by LRF processing. If the value has
been read, the parameter is considered valued. If the value has not yet been read, the
parameter is nonvalued.

A parameter is checked for being nonvalued by examining its associated XDE and
VXDE. The exact checks that need to be made depend on whether a parameter is
optional or required for that particular built-in function. The following considerations
apply:

■ If a parameter is optional, it is nonvalued if VXDEFNVL is ON, or if
XDEFNVL is ON and XDEDATAD is not equal to X'80000000'.

■ If a parameter is required, it is nonvalued if either of its XDEFNVL or
VXDEFNVL bits is ON.

If any parameter is nonvalued, the built-in function must react accordingly. The
proper action to take depends on the function being performed and which parameter is
nonvalued. In most cases, the built-in function will return a nonvalued result by
setting the VXDEFNVL flag in the result VXDE.

F.5.3 Calling a user-defined built-in function

Purpose: This is the generalized syntax for calling a user-defined built-in function.

 Syntax:

┌───── , ─────┐

��─── invocation-name ────── (─↓─ parameter ─┴─) ───────────────────────────��

 Parameters

invocation-name
Specifies the invocation name for the user-defined function.

F-42 CA-ADS Reference

F.5 Creating user-defined built-in functions

parameter
Specifies the parameters for the user-defined function.

Optional parameters that are not included must be replaced by the character @,
unless no included parameters follow the omitted parameter.

Appendix F. Built-in Function Support F-43

F-44 CA-ADS Reference

 Appendix G. Security Features

G.1 Overview . G-3
G.2 CA-ADS compiler security . G-4
G.3 CA-ADS application security . G-5

G.3.1 Response security . G-5
G.3.2 Signon security . G-6

Appendix G. Security Features G-1

G-2 CA-ADS Reference

G.1 Overview

 G.1 Overview

In the CA-IDMS environment, use of the CA-ADS compilers and use of the CA-ADS
applications that you develop with the compilers can be secured.

Compiler security: Use of the CA-ADS compilers can be secured through the
CA-IDMS central security system at various levels, such as at the task level and at the
program level. A dictionary that the compiler accesses can be secured as a database.

�� For more information about CA-IDMS central security, refer to CA-IDMS Security
Administration.

Use of the CA-ADS compilers to access particular dictionary entities can also be
controlled. You can secure access to dictionaries that the CA-ADS compilers access
using DDDL statements.

�� For more information about securing CA-ADS compilers using DDDL statements,
see G.2, “CA-ADS compiler security” later in this appendix.

Application security: Use of CA-ADS applications can be secured through
CA-IDMS central security at various levels, such as at the task level, the program
level, and the activity level. Databases that the application accesses, including
dictionaries, can be secured.

CA-ADS security classes are used when activities are secured in CA-IDMS. You can
also specify a security class for the CA-ADS application and security classes for
application responses. At runtime, the application issues a request for a security check
when a user tries to execute an application or an application response for which you
have specified a security class. If activity security has been enabled, CA-IDMS central
security checks to see whether the user has authority to execute the activity whose
activity number matches the security class.

�� For more information about CA-IDMS activity security, refer to CA-IDMS Security
Administration.

For information about specifying a security class in CA-ADS, see G.3.1, “Response
security” later in this appendix.

When you define a CA-ADS application, you can specify that the user must sign on to
the application in order to execute it.

�� For information about CA-ADS signon security, see G.3.2, “Signon security” later
in this appendix.

Appendix G. Security Features G-3

G.2 CA-ADS compiler security

G.2 CA-ADS compiler security

Compiler security for the Application Compiler (ADSA) and the Dialog Compiler
(ADSC) prohibits unauthorized users from adding, modifying, displaying, or deleting
applications and dialogs. The compilers perform a security check whenever a user
begins a compiler session (that is, when a user specifies the name of a
application/dialog to add, modify display, or delete). If the security check fails, the
user cannot perform the specified action.

Security is established by using the Integrated Data Dictionary (IDD) when the
following is true:

■ IDD SECURITY is ON in the dictionary

■ You are assigned the IDD authority through the AUTHORITY clause of the
DDDL USER statement

�� For more information on IDD security and the DDDL USER statement, refer to the
IDD DDDL Reference.

DDDL statements governing compiler security: Security at the compiler level
restricts the actions that a user can specify for any application and dialog. Security at
the compiler level is governed by the following two DDDL statements:

■ SET OPTIONS ... SECURITY FOR ADS IS ON/OFF— Specifies whether
compiler level security is in effect. If security for CA-ADS is off, the user passes
the compiler level security check. If security is on and the user has not signed on
to DC/UCF, the user immediately fails the security check. Otherwise, the user
passes or fails the security check based on the USER statement discussed below.

■ ADD/MOD USER user-name ... INCLUDE/EXCLUDE AUTHORITY FOR
UPDATE/ADD/MODIFY/REPLACE/DELETE/DISPLAY IS ADS— Specifies
the actions that the user has the authority to perform using the application or
dialog compiler. The user passes or fails the security check depending on whether
the user has specified an authorized action.

�� For more information on the SET OPTIONS and USER statements, see the IDD
DDDL Reference.

If the user fails the application or dialog compiler level security check, the compiler
displays an error message. If the user passes the security check, the compiler performs
a security check at the application/dialog-specific level.

G-4 CA-ADS Reference

G.3 CA-ADS application security

G.3 CA-ADS application security

There are two ways in which CA-ADS applications can be protected from
unauthorized use.

Outside the application: Protection can be provided at the application level
through the CA-IDMS central security system. For example, a user's authority to
execute programs and dictionary load modules can be controlled through the
CA-IDMS central security facility.

Within the application: In addition to defining security outside the application, the
CA-ADS application compiler provides two security features that allows you to define
security within the application:

■ Security for responses

 ■ Signon security

Security for responses is based on application activity security controlled through the
CA-IDMS central security facility. Within the security facility, application activities
can be defined as secured resources and authority to execute those activities granted to
one or more users.

Response security, and signon security are discussed separately below.

 G.3.1 Response security

Response security enables you to define security for individual application functions.
To implement response security, you enter a number in the Security class field of the
ADSA Response Definition screen. When the application is compiled, the application
load module includes the activity number of each response.

At runtime, response security is enforced if the security administrator has secured
activities and has defined activities that correspond to the application functions for
which response security is defined. When the application issues a security check on a
response, CA-IDMS central security looks for an activity definition in which the
application name matches the CA-ADS application name and the activity number
matches the CA-ADS response security class.

CA-ADS makes no calls to CA-IDMS central security for security class 0, which is
defined always as unsecured.

�� For more information on defining and controlling application activities, refer to the
CA-IDMS Security Administration.

If a user without execute authority for the corresponding activity, attempts to execute a
secured response, the runtime system redisplays the screen from which the response
was selected, along with the following message:

Appendix G. Security Features G-5

G.3 CA-ADS application security

UNACCEPTABLE RESPONSE. PLEASE TRY AGAIN

Because the response is secured, the function invoked by the response cannot be
accessed unless the security administrator has authorized the appropriate users to
execute the corresponding application activity defined to CA-IDMS central security.

Response security is complemented by the CA-ADS security-tailored menus feature.
At runtime, security-tailored menus list only those responses that the user has authority
to select. Menus are security-tailored by selecting option 2, Security tailored, on the
second page of the ADSA General Options screen.

 G.3.2 Signon security

Signon security can be implemented for any application defined using the application
compiler. With signon security, a user begins executing an application by entering a
user ID and password, which the runtime system validates. To implement signon
security for an application, follow the steps listed below:

1. Specify SIGNON IS OPTIONAL or SIGNON IS REQUIRED on the second
page of the ADSA General Options screen. If signon is optional, the user can
sign on before executing the application, but is not required to. If signon is
required, the user must enter a valid user ID and password before executing the
application.

2. Specify the name of the signon menu function on the second page of the
ADSA General Options screen. The signon menu function is executed first
when the user begins executing the application. The function displays a signon
menu screen, which provides fields in which to enter a user ID and password.

�� An example of a signon menu screen is shown in 4.2.3, “System-defined menu
maps.”

3. Define an immediate response that invokes the SIGNON system function on
the Response Definition screen. When invoked at runtime, the SIGNON
function validates the user ID and password entered by the user, then returns
control to the signon menu function.

4. Define the signon menu function on the Function Definition screen and any
appropriate secondary screen, as follows:

■ On the Function Definition screen, define the function as a menu function and
specify the function name supplied on the Security screen. Optionally,
specify that the response that invokes the SIGNON system function is the
default response for the signon menu function; if this response is the default,
the user need only press the [Enter] from the function at runtime to invoke the
SIGNON function.

■ On the Menu Function Definition screen, specify that the menu function is a
signon menu function by entering a slash (/) in the Use signon menu field.

■ On the Valid Responses screen, specify that the response that invokes the
SIGNON system function is a valid response for the signon menu function.

G-6 CA-ADS Reference

G.3 CA-ADS application security

Runtime processing: At runtime, processing is performed as follows:

1. When the application begins execution, the runtime system displays the signon
menu function. If signon is optional, all valid responses for the function are
displayed. If signon is required and menus are security tailored, only authorized
responses are displayed.

2. On the signon menu screen, the user signs on by entering a user ID and password
in the appropriate fields, then selecting the response that invokes the SIGNON
system function. If signon is optional, the user can instead begin executing the
application immediately.

3. The SIGNON system function validates the signon, then redisplays the signon
menu screen with one of the following messages:

SIGNON ACCEPTED

SIGNON FAILED; UNKNOWN USER ID

SIGNON FAILED; INVALID PASSWORD

4. If the signon is accepted, all valid responses for the signon menu function are
displayed; the user can execute the application. If the signon fails, the user can
attempt to sign on again.

The signon menu function may be different than the function invoked by the initiating
application task code. In such cases, the application begins by executing the signon
menu function. The function associated with the application task code is executed
when the user presses [Enter] from the redisplayed signon menu screen after signing
on successfully. If signon is optional, the user can press [Enter] without signing on.

The SIGNOFF system function can be used in conjunction with signon security.
When selected at runtime, the SIGNOFF function signs the user off the application,
then redisplays the screen from which the function was selected. If signon is required,
the next user must sign on successfully before executing the application.

The SIGNOFF function: To implement the SIGNOFF system function, perform the
following steps using the application compiler:

1. Define a response that invokes the SIGNOFF system function on the Response
Definition screen.

2. Make the response a valid response for the signon menu function on the Valid
Responses screen.

3. Define the application structure so that the user, at runtime, can return to the
signon menu function to sign off.

At runtime, when the SIGNOFF system function is invoked, the runtime system signs
the user off the application, then redisplays the screen with the following message:

SIGNOFF ACCEPTED

If signon is required, the runtime system additionally blanks out all responses listed on
the screen.

Appendix G. Security Features G-7

G-8 CA-ADS Reference

Appendix H. Debugging a CA-ADS Dialog

H.1 Creating a symbol table . H-4
H.2 Trace facility . H-5
H.3 Online debugger . H-7

Appendix H. Debugging a CA-ADS Dialog H-1

H-2 CA-ADS Reference

About this appendix: To debug dialogs, you can use the CA-ADS trace facility
and the CA-IDMS online debugger. This appendix explains the use of both facilities.

Appendix H. Debugging a CA-ADS Dialog H-3

H.1 Creating a symbol table

H.1 Creating a symbol table

Prerequisite for debugging: To use either the trace facility or the online
debugger to debug a dialog, you must first compile the dialog with a symbol table. A
symbol table contains information such as data field names and process command line
numbers that enable the trace facility and the online debugger to execute.

How to create a symbol table: When defining the dialog using the dialog
compiler, invoke the Options and Directives screen and enter a nonblank character
next to the Symbol table is enabled prompt, as shown below:

Options and Directives

 Dialog JPKTD1H Version 1

 Type and select each option and directive. Then Enter.

Message prefix DC

Autostatus record ADSO-STAT-DEF-REC

Version 1

Options and directives _ Mainline dialog

x Symbol table is enabled

/ Diagnostic table is enabled

/ Entry point is premap

_ COBOL moves are enabled

/ Activity logging

/ Retrieval locks are kept

/ Autostatus is enabled

Enter F1=Help F3=Exit F4=Prev F5=Next

�� For more information about the Options and Directives screen, see Chapter 3,
“CA-ADS Dialog Compiler (ADSC).”

In ADSOBCOM, use the symbol table option of the DIALOG expression.

�� For more information about ADSOBCOM, see Appendix D, “Application and
Dialog Utilities.”

Compile the dialog. When the dialog successfully compiles, a load module with
interpretable CMEs is created.

H-4 CA-ADS Reference

H.2 Trace facility

 H.2 Trace facility

The CA-ADS trace facility is a debugging aid used to trace the flow of control and
commands executed in a CA-ADS application at runtime.

The CA-ADS trace facility writes trace records to the DC/UCF system log as DEBUG
records. Trace records can be viewed by using online PLOG or the batch print-log
utility (PRINT LOG). Use the MESSAGES parameter to print the CA-ADS trace
records.

Note: The PRINT LOG TRACES parameter will not print the CA-ADS trace records.

�� For more information about online PLOG, refer to CA-IDMS System Tasks and
Operator Commands. For information about the batch print-log utility, refer to
CA-IDMS Utilities.

Information in a trace facility report: The table below describes the information
contained in a trace facility report.

Format of a trace facility record for a non-SQL DML statement.: The format
of a trace facility record for a non-SQL DML statement is shown below.

Field Contents

Dialog name The name of the currently executing dialog.

Process name The name of the currently executing premap or response
process.

****** DIALOG-ENTRY ****** in this field documents
the beginning of a dialog.

Subroutine name The name of the process subroutine currently executing.

MAIN in this field documents the beginning of a dialog,
process, or process command that is not in a subroutine.

Sequence number The IDD sequence number of the command currently
executing.

00000000 appears in this field at the beginning of a dialog,
process, or subroutine.

Process command The process command currently executing.

ENTRY in this field documents the beginning of a dialog,
process, or subroutine.

Command offset The hexadecimal offset of the command from the beginning
of the dialog's fixed dialog block (FDB).

Included module
name

The name of each included module.

Appendix H. Debugging a CA-ADS Dialog H-5

H.2 Trace facility

 ┌────────┬┬────────┬┬────────┬┬────────┬┬────────┬┬────────┬┬────────┬┬────────┐

│ ││ ││ ││ ││ ││ ││ ││ │

 │ Blank ││ Dialog ││Process ││Sub- ││Sequence││Process ││Command ││Included│

│ ││ Name ││Name ││routine ││Number ││Command ││Offset ││Module │

│ ││ ││ ││Name ││ ││ ││ ││Name │

 └────────┴┴────────┴┴────────┴┴────────┴┴────────┴┴────────┴┴────────┴┴────────┘

H 8 17 5H 61 7H 79 86 118

Format of a trace facility record for an SQL DML statement.: The trace
facility report for an SQL statement follows the format below:

1. SQL CMT = followed by the SQL command (for example, SELECT).

2. CODE = followed by the appropriate SQL code

3. ERROR = followed by the 5-digit error.

Below this information is the database message passed from the SQLCA.

�� For information about the SQLCA, see CA-IDMS SQL Programming.

Initiating the trace facility: You can initiate the trace facility in one of these
ways:

■ Use the TRACE keyword in the runtime system initiating statement when
requesting execution of the application

�� For more information about the TRACE keyword, see 4.1, “Initiating the
CA-ADS runtime system.”

■ Coding the TRACE command in the dialog process

�� For documentation of the TRACE command, see 20.6, “TRACE.”

Specifying TRACE when initiating CA-ADS results in tracing the execution of all
dialogs in the application that have been compiled with a symbol table. You use
TRACE and TRACE OFF in process logic to limit the trace.

The system log: Using the CA-ADS trace facility can fill the DC/UCF system log
quickly. Information on the entire application is collected for each process command
in dialogs that have a symbol table enabled and TRACE=ALL specified. A record is
written to the system log for each command.

To avoid overloading the system log, the system log can be defined to sequential log
files instead of the DDLDCLOG area. Assigning the system log to sequential log files
facilitates offloading the system log when it becomes full.

�� More information about log files can be found in CA-IDMS System Generation.

H-6 CA-ADS Reference

H.3 Online debugger

 H.3 Online debugger

What you can do: The online debugger enables the application developer to
interrupt execution of a dialog's premap or response process, display and change the
contents of data fields, and restart execution from any point in the interrupted dialog.
If a dialog aborts during a debugger session, the application developer can review the
contents of the data fields at the time of the abend, change the contents of the data
fields, and resume dialog execution at any point. For example, a breakpoint can be set
at line 200 in a premap process and can specify that an interruption is to occur every
second time the process command is executed at runtime.

If CA-ADS encounters a potential breakpoint at runtime, it passes control to the online
debugger. If the conditions for interrupting the dialog are not met, control returns to
the runtime system and execution continues. If the conditions are met, the online
debugger keeps control and allows the application developer to perform functions such
as reviewing and modifying data fields, modifying breakpoint specifications, aborting
dialog execution, and resuming execution at a specified point.

If a dialog aborts during a debugger session, the CA-ADS runtime system displays a
special version of the Dialog Abort Information screen and then links to the online
debugger.

�� For more information, see 4.6, “Dialog Abort Information screen.”

The special screen version allows the application developer to continue the debugging
session for the dialog. The application developer can enter debugger commands at the
prompt that appears on the screen.

Procedures: Procedures for debugging a CA-ADS dialog are the same as those
used with any other program running under DC/UCF: once the dialog is defined to the
debugger with the DEBUG command, debugging procedures can take place. It is
easier, however, to find dialog records or to find the command elements (CMEs) for
breakpoints when the load module is generated in interpretable code and symbol
recognition is in effect.

�� For more information about debugging, refer to CA-IDMS Online Debugger.

Recommended steps: It is recommended that you take the following steps when
debugging a CA-ADS dialog:

1. Create a symbol table for the dialog

2. Compile the dialog

3. Run ADSORPTS for the dialog

4. Issue the DEBUG task code to invoke the debugger

5. Define the dialog to the debugger

Appendix H. Debugging a CA-ADS Dialog H-7

H.3 Online debugger

6. Set breakpoints (as required)

7. Issue the EXIT command to leave the debugger

8. Invoke the CA-ADS runtime system and execute the dialog

9. Continue processing the dialog

10. Issue the EXIT or QUIT command when debugging is completed

Run ADSORPTS for the dialog: Run the CA-ADS Dialog Report (ADSORPTS)
for the given dialog. Specify the PROCESS and/or FDBLIST options when submitting
the report: PROCESS displays the sequence line numbers that are assigned to the
process source; FDBLIST provides the line numbers (SEQ#) and the offsets of the
CMEs. The address or line number of a CME can then be used to set a valid
breakpoint within the premap or response process.

�� For more information on the ADSORPTS utility, see Appendix B, “CA-ADS
Dialog and Application Reporter.”

Issue the DEBUG task code: Issue the DEBUG task code to invoke the
debugger.

�� For information on initiating a debugger session, refer to CA-IDMS Online
Debugger.

Define the dialog to the debugger: Define the dialog to the debugger by issuing
a command similar to the one in the following example:

DEBUG>

debug dialog medduins

The debugger responds to the above command with the following message:

DEBUG DIALOG MEDDUINS

DEBUG> DEBUGGING INITIATED FOR MEDDUINS VERSION 1

DEBUG>

If you omit the word dialog, the debugger issues an error message:

DEBUG>

debug medduins

DEBUG MEDDUINS

DEBUG> INCONSISTENT ENTITY TYPE

- MEDDUINS VERSION 1 DEFINED AS A DIALOG

DEBUG>

This message indicates that the debugger has tried to process MEDDUINS as a
program but can only find a PDE (program descriptor element) that defines
MEDDUINS as a dialog. The command needs to be modified to state that
MEDDUINS is a dialog:

H-8 CA-ADS Reference

H.3 Online debugger

DEBUG>

debug dialog medduins

Set breakpoints: Set breakpoints as required. Breakpoints must be set at line
numbers or addresses that contain valid command instructions (valid CMEs).

�� For more information about setting breakpoints, refer to CA-IDMS Online
Debugger.

Issue EXIT: Issue the EXIT command and leave the debugger.

Invoke the CA-ADS runtime system: Invoke the CA-ADS runtime system and
execute the dialog in the standard manner.

When a breakpoint is encountered during the execution of the dialog, a message
appears on the screen that identifies the breakpoint. The DEBUG> prompt or menu
mode screen is displayed, signalling that you are now in the runtime phase of the
debugger and can enter any of the debugger commands except DEBUG.

�� For complete information on command syntax, refer to CA-IDMS Online Debugger.

Continue processing the dialog: Continue processing the dialog. When the
single command RESUME is issued without any qualifying parameters, processing
continues from the current CME (the instruction immediately following the
breakpoint). When a RESUME debug-expression is issued, processing resumes at the
address specified by the expression.

When you issue a RESUME dialog-expression command from a point within the main
body of the dialog process, the debug expression must resolve to an address also
within the main body of the dialog. Similarly, when a RESUME dialog-expression is
issued from a subroutine, the debug expression must resolve to an address within the
same subroutine. Results are unpredictable when execution is not resumed in
accordance with these rules.

In the event of an abend: In the event of an abend, you see the CA-ADS Debug
screen with dialog abort information, the DEBUG> prompt, and the menu mode
selection area. Any valid debugger command can be entered on the prompt line or can
be selected from the menu. When a selection is made from the menu, the debugger
automatically operates in menu mode and displays the specified screen. A sample
Debug screen is shown below. Note the DEBUG> prompt and menu selection area
located at the bottom of the screen. All commands, except DEBUG, can be issued in
response to the prompt or can be selected in the menu area:

Appendix H. Debugging a CA-ADS Dialog H-9

H.3 Online debugger

< =
CA-ADS RELEASE 15.H ___ DIALOG ABORT INFORMATION ___ DBUG

DC175H2H APPLICATION ABORTED. PGM CHECK (DATA EXCEPTION).

 DATE....: 91.22H TIME....: 17:1H:23.55 TERMINAL....: LV81HH1

 ERROR OCCURRED IN DIALOG......: MISINCD

AT OFFSET......: 3D8

IN PROCESS.....: MIS-MAIN1 VERSION: 1

AT IDD SEQ NO. : HHHHHH1HH INTERNAL COMMAND: 2

INCLUDED MODULE : MIS-INC1 VERSION: 1

SEQUENCE

NUMBER: SOURCE :

HHHHHHHH

HHHHH1HH ADD 1 TO MIS-NUM.

HHHHH2HH ! THIS IS MIS-INC1

DEBUG>

 NEXT _ ACTIVITY OR _ HELP:

 _ AT _ LIST _ SET _ SNAP _ RESUME _ DEBUG _ WHERE

 _ EXIT _ PROMPT _ QUIT _ IOUSER

 HELP SCREENS: _ USAGE _ SYMBOLS _ KEYS

L M

Issue the RESUME ABEND or a RESUME debug-expression command to continue
processing the dialog.

QUIT or EXIT: Issue the QUIT or EXIT command when debugging is completed.
QUIT clears the debugger control blocks and ends the debugger session; EXIT returns
you to the ENTER NEXT TASK CODE prompt. but leaves the control blocks intact
so that the debugger session can continue.

H-10 CA-ADS Reference

 Index

Special Characters
$BACKWARD condition 8-23
$BATCH condition 8-16
$DETAIL condition 8-23
$DETAIL-NOT-FOUND condition 8-23
$END-OF-DATA condition 8-23
$END-OF-FILE condition 8-6
$ERROR-COUNT field 11-9
$FORWARD condition 8-22
$HEADER condition 8-23
$INPUT-COUNT field 11-9
$IOERROR condition 8-6
$MAXIMUM-DETAILS-PUT condition 8-24, 17-32
$MESSAGE field 8-18, 17-33
$ONLINE condition 8-16
$OUTPUT-COUNT field 11-9
$PAGE field 8-18, 17-24
$PAGE-READY condition 8-22
$RESPONSE field 8-18
#EFMBIFS macro F-28
#EFUNMOD macro F-31
#EFUNMST macro F-27

A
ABORT command 20-4
ABSOLUTE-VALUE 7-11
ACCEPT command 16-12, 20-8
access module 3-21
activity logging E-3—E-8

activity logging records E-3—E-6
function commands E-6
function numbers E-6

ADB
See application definition block (ADB)

ADD command 13-6
ADSA

See application compiler (ADSA)
ADSC

See dialog compiler (ADSC)
ADSL 1-30
ADSM 1-31
ADSO-APPLICATION-GLOBAL-RECORD A-4—A-14

AGR-CURRENT-RESPONSE 4-19, 15-17
definition of A-4
usage A-4

ADSO-APPLICATION-MENU-RECORD
at runtime 4-8
definition of A-15
usage A-15

ADSO-STAT-DEF-REC record 10-9
ADSOBCOM D-4—D-36

control statements D-5—D-29
JCL and command statements D-30

ADSOBSYS D-37—D-48
ADSOOPTI load module D-37
JCL and command statements D-39

ADSOBTAT D-48—D-56
JCL and command statements D-51
task application table (TAT) D-48

ADSOMSON menu map 4-9
ADSOMUR1 menu map 4-9
ADSOMUR2 menu map 4-9
ADSOOPTI load module

See ADSOBSYS
ADSORPTS

application reports B-15
control statements B-16—B-23
dialog debugging B-13
dialog reports B-4—B-5

ADSOTATU D-57—D-59
AFACT-057 record E-4—E-6
AGR-CURRENT-RESPONSE

See ADSO-APPLICATION-GLOBAL-RECORD
ALLOCATE command 21-10
ALLOWING clause 10-7
AMR-RESPONSE-FIELD

See ADSO-APPLICATION-MENU-RECORD
APPC (Advanced Program to Program

Communication) 21-3
APPC status codes 21-30
APPCCODE status code 21-30, 21-31
APPCERC status code 21-30, 21-31
application compiler (ADSA) 2-19, 2-27

control key assignments 2-10
Function Definition (Menu) screen 2-32—2-37
Function Definition (Program) 2-30
Function Definition (Program) screen 2-32
Function Definition screen 2-27
General Options 2-14—2-19
General Options screen—Page 2 2-16—2-19
General Options—Page 1 2-14—2-16
Global Records screen 2-37
Response Definition screen 2-23

Index X-1

application compiler (ADSA) (continued)
Response/Function List screen 2-19—2-23
secondary screens 2-32
Task Codes screen 2-39

application compiler sequence
screen sequence 2-7

application compiler session
invoking 2-4
screen sequence 2-10
suspending 2-10

application definition block (ADB) 20-12
application reporter

See ADSORPTS
application response

See response
application security G-5—G-7
application structure

levels of 15-6
mainline dialogs 15-7

application thread
definition of 15-5
menu stack 15-7
nonoperative dialogs 15-6
operative dialogs 15-6

applications
compiling of 2-10
defining global records 2-37
defining responses and functions 2-19
defining task codes 2-39
specifying control blocks 2-30
specifying menus 2-32
specifying record buffers 2-30

APPLICATIONS statement B-16—B-18
arc cosine values 7-12
arc sine values 7-13
arc tangent values 7-14
AREPORTs B-3
arithmetic built-in functions

ABSOLUTE-VALUE 7-11
INVERT-SIGN 7-30
LOG-BASE-10 7-34
LOG-BASE-E 7-34
MODULO 7-35
next integer equal or higher 7-36
next integer equal or lower 7-37
NUMERIC 7-38
RANDOM-NUMBER 7-40
sign inversion 7-30
SIGN-VALUE 7-45
SQUARE-ROOT 7-47

arithmetic commands
See also arithmetic expression
ADD 13-6
COMPUTE 13-7
DIVIDE 13-8
MULTIPLY 13-10
SUBTRACT 13-11
summary of 13-3

arithmetic expressions
binary operations 6-3
coding rules 6-6
operands 6-3
order of evaluation 6-5
unary operations 6-3
variable data fields 6-5
WHERE clause 16-66

Assembler
See user program

assigned key 2-21
assignment command

MOVE 13-12
automatic editing 4-22, 8-20
autostatus facility 10-4—10-5

status codes 10-4

B
BACKWARD function 1-9

See also system functions
batch control event conditions

$END-OF-FILE ($EOF) 8-6
$IOERROR ($IOERR) 8-6

batch dialog compiler
See ADSOBCOM

batch processing
$ERROR-COUNT 11-9
$INPUT-COUNT 11-9
$OUTPUT-COUNT 11-9

binary data 5-11
BIND PROCEDURE command 16-19
BS2000/OSD JCL

ADSOBCOM D-35
ADSOBSYS D-46
ADSOBTAT D-55
ADSORPTS B-29

built-in functions 4-34—4-39
See also functions
calling user-defined functions F-42
changing invocation names F-3
coding user-defined functions F-42
creating user-defined functions F-41

X-2 CA-ADS Reference

built-in functions (continued)
data type conversion 7-4
date formats 7-6
error processing 7-4
internal structure F-4
invocation name 7-3, F-40
omitted optional parameter 7-4
parameters 7-4
runtime processing F-24
user-defined 7-5, F-41
with LRF F-42

C
CA-ADS

conversion rules 13-12
CA-ADS comment character 5-9
CA-ADS dialog and application reporter

See ADSORPTS
CA-ADS statistics block

See dialog statistics
CA-IDMS statistics block 16-18
CA-OLQ 4-33
CALL command 19-4
CHANGED condition 8-19
characteristic 9-10
checkouts

explicit 1-28
implicit 1-29
listing 1-30
modifying with ADSM 1-31
releasing with ADSM 1-31

checkpoint 4-26, 16-59
database 16-59
queue 16-59
scratch 16-59

CLOSE command 17-10
COBOL

See also user program
conversion rules 13-12

COBOL moves 3-16, 5-17, 13-6, 13-7, 13-8, 13-9,
13-10, 13-12, 13-13, 13-14

coding
arithmetic expressions 6-6
CA-ADS comment character 5-9
general rules 5-8
SQL comment character 5-9

command status condition
ERROR-STATUS 8-7

command-statements
DO 14-5

command-statements (continued)
ELSE 14-5
END 14-5, 14-10
REPEAT 14-10
THEN 14-5

commands 12-4, 14-3
See also Logical Record Facility database access
See also navigational database access
See also process commands
See also VM/ESA commands
ABORT 20-4
ACCEPT 16-12, 20-8
ADD 13-6
arithmetic 13-3
assignment 13-12
BIND PROCEDURE 16-19
CALL 19-4
CLOSE 17-10
COMMIT 16-20
COMPUTE 13-7
conditional 14-3
CONNECT 16-22
CONTINUE 15-10
control 15-3—15-38
DEFINE 19-5
DELETE QUEUE 18-7
DELETE SCRATCH 18-17
DISCONNECT 16-25
DISPLAY 15-12
DIVIDE 13-8
ERASE 16-27, 16-68
EXECUTE NEXT FUNCTION 15-17
EXIT 14-4
FIND/OBTAIN 16-30
GET 16-44
GET DETAIL 17-28
GET QUEUE 18-9
GET SCRATCH 18-19
GOBACK 19-6
IF 14-4
INCLUDE 12-8
INITIALIZE RECORDS
INVOKE 15-19
KEEP 16-46
KEEP LONGTERM 16-47
LEAVE 15-22
LINK 15-24
LRF 16-64—16-76
map modification 17-3
MODIFY 16-53, 16-69
MULTIPLY 13-10

Index X-3

commands (continued)
navigational database access 16-5—16-63
NEXT 14-8
OBTAIN 16-70
pageable map 17-3
PUT DETAIL 17-30
PUT QUEUE 18-12
PUT SCRATCH 18-22
queue management 18-3
READ TRANSACTION 15-30
RETRUN 15-31
RETURN DB-KEY 16-57
ROLLBACK 16-59
scratch management 18-3
SNAP 20-11
STORE 16-60, 16-75
subroutine control 19-3
SUBTRACT 13-11
summary of 12-4
TRACE 20-13
TRANSFER 15-34
utility 20-3
WHILE 14-10
WRITE PRINTER 20-14
WRITE TO LOG/OPERATOR 20-18
WRITE TRANSACTION 15-36

COMMIT command 16-20
comparison conditions

CONTAINS 8-10
mask characters 8-11
MATCHES 8-10
operators 8-10

compiler (ADSA)
security G-4

compiler (ADSC)
security G-4

COMPUTE command 13-7
CONCATENATE built-in function 7-15
conditional commands

EXIT 14-4
IF 14-4
NEXT 14-8
WHILE 14-10

conditional expressions
$MESSAGE field 8-18
$PAGE field 8-18
$RESPONSE field 8-18
batch control event condition 8-6
command status condition 8-7
comparison condition 8-10
cursor position condition 8-12

conditional expressions (continued)
dialog execution status condition 8-14
environment status condition 8-16
for maps 17-4
level-88 condition 8-17
map field status condition 8-18
map paging status conditions 8-22
operators in 8-4
order of precedence 8-4
set status condition 8-25
summary 8-5

CONFIRM command 21-13
CONFIRMED command 21-14
CONNECT command 16-22
constants 9-3

figurative constants 9-4
fixed-point numeric literals 9-9
floating-point numeric literals 9-9
graphic literals 9-6
multibit binary 9-7
nonnumeric literals 9-8
numeric literals 9-9

CONTAINS condition 8-10
CONTINUE command 15-10
control commands

BIND PROCEDURE 16-19
CLOSE 17-10
CONTINUE 15-10
DISPLAY 15-12
EXECUTE NEXT FUNCTION 15-17
INVOKE 15-19
LEAVE 15-22
LEAVE APPLICATION 15-22
LINK 15-24
READ TRANSACTION 15-30
RETURN 15-31
TRANSFER 15-34
WRITE TO LOG/OPERATOR 20-18
WRITE TRANSACTION 15-36

control event 2-21, 8-6
See also assigned key

control keys
See also application compiler
See also dialog compiler (ADSA)
default assignments 4-21

CONTROL SESSION command 21-15
control statements

See also ADSORPTS
ADSOBSYS D-37
ADSOBTAT D-49
COMPILE D-6

X-4 CA-ADS Reference

control statements (continued)
DECOMPILE D-8

conversation, ending 21-25
conversion

CA-ADS rules 13-12
COBOL rules 13-12

cosine values 7-16
currency

See also NOSAVE
database 15-7, 16-5
index 16-58
of area 16-5
of record type 16-5
of run unit 16-5, 16-33
of set type 16-5
queue 18-5
scratch requests 18-15

cursor position condition
CURSOR-COLUMN 8-12
CURSOR-ROW 8-12

cursor position data field
CURSOR-COLUMN 11-8
CURSOR-ROW 11-8

CURSOR-COLUMN condition 8-12
CURSOR-ROW condition 8-12

D
data dictionary

AFACT-057 E-4—E-6
LR-190 E-4
LRACT-193 E-4—E-6, E-8
organization E-4
RCDACT-059 E-4—E-6, E-8
SETACT-061 E-4—E-6
SSA-024 E-4
SSOR-034 E-4
SSR-032 E-4

Data Dictionary Reporter
See AREPORTs

data types
available to CA-ADS 5-10
binary 5-11
conversion of 5-16
conversion rules 13-12
definition of 5-10
doubleword binary 5-11
EBCDIC 5-11
examples of 5-14
floating point 5-12
fullword binary 5-11

data types (continued)
group 5-12
halfword binary 5-11
multibit binary 5-13
packed decimal 5-13
zoned decimal 5-13

database
access of 4-25
CA-IDMS statistics block 16-18
CALC key 16-31
checkpoint 16-20
currency 16-5
db-key 16-12, 16-14, 16-34, 16-58
location modes 16-62
modification of CALC elements 16-54
modification of sort-control elements 16-54
monitoring activity 16-47—16-51
set membership options 16-22
statistics 16-17
usage modes 16-55

database access 4-24
Logical Record Facility (LRF) 16-64

database activity
See activity logging

database commands
See also Logical Record Facility database access
See also navigational database access
implicit E-3

database currency
See currency
See NOSAVE

date built-in functions
DATECHG 7-17
DATEDIF 7-20
DATEOFF 7-21
GOODDATE 7-25
TODAY 7-54
TOMORROW 7-56
WEEKDAY 7-62
YESTERDAY 7-66

date formats
calendar 7-6
European 7-6
Gregorian 7-6
Julian 7-6, 11-8

date offset 7-21
DATECHG built-in function 7-17
DBCS data

as a graphic literal 9-6
as a nonnumeric literal 9-8
storage of 13-4

Index X-5

deadlock 4-26
DEALLOCATE command 21-17
debugging 4-32

See also ADSORPTS
See also online debugger
See also trace facility

DEFINE command 19-5
DELETE QUEUE command 18-7
DELETE SCRATCH command 18-17
Design guidelines 21-25
detail area 17-21
diagnostic screen

See Dialog Abort Information screen
diagnostic table 3-15
dialog

See also ADSOBCOM
FDB B-5—B-11

Dialog Abort Information screen 4-28, B-14, H-7
enabling of 20-6

dialog compiler
See ADSOBCOM

dialog compiler (ADSC)
control keys 3-7
Dialog Summary Report screen 1-26
Dialog Summary screen 1-26
Map Image screen 1-26
Options and Directives 3-13
screens 3-10
session 3-4

dialog compiler session
invoking 3-4
suspending 3-8

dialog execution status
FIRST-TIME 8-14

dialog expression (ADSOBCOM) D-10—D-29
dialog function 1-9

See also function
dialog reporter

See ADSORPTS
Dialog Selection screen 4-4
dialog statistics

CA-ADS statistics block C-5
checkpoint interval C-10
enabling of C-8
runtime collection and writing C-11
selecting C-9
statistics block identifiers C-11
statistics reporting C-12
transaction statistics block C-4

Dialog Summary screen 1-26
Map Image screen 1-26

dialog, location of allocated 21-25
dialogs

mainline 4-3
DIALOGS statement B-19—B-21
DISCONNECT command 16-25
DISPLAY command 15-12

mapout rules 15-14
status test outcome 8-14

DIVIDE command 13-8
DO command-statement 14-5
double-byte character set

See DBCS
doubleword binary data type 5-11
dumps

snap dumps 20-6

E
EBCDIC data type 5-11, 13-4
EDIT IS ERROR/CORRECT condition 8-18
ELSE command-statement 14-5
END command-statement 14-5, 14-10
environment status condition

$BATCH 8-16
$ONLINE 8-16

ERASE command 16-27, 16-68
ERASED condition 8-20
error expressions 10-6
error handling

ADSO-STAT-DEF-REC 10-9
ALLOWING clause 10-7
autostatus 10-4—10-5
built-in functions F-25
error expressions 10-6
level-88 condition names 10-9
site defined status definition record 10-10
STATUS clause 10-9
status definition record 10-9
system-defined status definition record 10-9

error messages
suppression of 17-17

ERROR-STATUS condition 8-7
exclusive usage mode 16-55
EXECUTE NEXT FUNCTION command 8-14

mapless dialog 15-17
EXECUTE ON EDIT ERRORS command 8-20
execution modes 2-16, 3-3
EXIT command 14-4
explicit checkouts 1-28
explicit releases 1-28

X-6 CA-ADS Reference

expression description element
See XDE module

extended run units 4-25—4-27
See also run unit
checkpoint 4-26
deadlock 4-26

EXTRACT built-in function 7-23

F
fast mode 2-16
FDB

See fixed dialog block
See fixed dialog block (FDB)

figurative constants 9-4
FIND/OBTAIN

FIND 16-31
FIND/OBTAIN command
FIRST-TIME condition 8-14, 15-34
FIX built-in function 7-24
fixed dialog block (FDB) 20-11

contents of B-5—B-11
fixed-point numeric literals 9-9
floating point data types

display 5-12
internal long 5-12
internal short 5-12

floating-point numeric literals 9-9
flow of control 4-19—4-22

automatic editing 4-22
default control key assignments 4-21

footer area 17-21
FORWARD function 1-9

See also system functions
fullword binary data type 5-11
function

See dialog function
See menu function
See menu/dialog function
See program function

Function Definition (Dialog) screen 2-27
Function Definition (Menu) screen 2-32
Function Definition (Program) screen 2-30
functions

See built-in functions

G
G-literals

See graphic literals

General Options screen—Page 2 2-16—2-19
General Options—Page 1 2-14—2-16
GET command 16-44
GET DETAIL command 8-23, 17-28
GET QUEUE command 18-9
GET SCRATCH command 18-19
Global Records screen (ADSA) 2-37
GOBACK command 19-6
GOODDATE built-in function 7-25
GOODTRAILING built-in function 7-26
graphic literals 9-6
group data type 5-12

H
halfword binary data type 5-11
header area 17-21
HELP function 1-9

See also system functions
help screen 4-16

I
ICTL statement

ADSOBCOM D-4
ADSOBSYS D-37

IDENTICAL condition 8-19
IF command 14-4
implicit checkouts 1-29
implicit releases 1-29
IN ERROR condition 8-18, 8-20
INCLUDE command 12-8
INDEX built-in function 7-48
INITCAP built-in function 7-27
INITIALIZE RECORDS command 20-10
INSERT built-in function 7-28
INSERT directive 12-8
intermediate result area (IRA) F-24
INVERT-SIGN built-in function 7-30
INVOKE command 15-19

status test outcome 8-14
ISEQ statement

ADSOBCOM D-4
ADSOBSYS D-37

J
JCL

See BS2000/OSD JCL
See OS/390 JCL
See VM/ESA commands
See VSE/ESA JCL

Index X-7

K
KEEP commands 16-46
KEEP LONGTERM command

L
LEAVE APPLICATION command 15-22
LEAVE command 15-22

status test outcome 8-14
LEFT-JUSTIFY built-in function 7-31
length

See STRING-LENGTH built-in function
level-88 condition 8-7, 8-17
LIKE built-in function 7-32
LINK command

linking to OLQ 4-33
nesting 15-26
status test outcome 8-14
with a user program 15-26

LIST statement B-21
literal

See constants
local mode processing

SYSIDMS parameter file B-24
location mode

CALC 16-62
DIRECT 16-62
VIA 16-62

log
See activity logging

LOG-BASE-10 built-in function 7-34
LOG-BASE-E built-in function 7-34
logarithms

See arithmetic built-in functions
Logical Record Facility

linking to dialog with LRF subschema 15-27
logical records

See also Logical Record Facility database access
in database access 16-64
path 16-64

LR-190 record E-4
LRACT-193 record E-4—E-8
LRF

path status 16-72
LRF commands

ERASE 16-68
MODIFY 16-69
OBTAIN 16-70
ON command 16-71
STORE 16-75

LRF commands (continued)
WHERE clause 16-65

LU 6.2 21-3

M
mainline dialogs 15-7
mantissa values 9-10
map field status conditions

ALL BUT 8-19
CHANGED 8-19
ERASED 8-20
EXCEPT 8-19
IDENTICAL 8-19
IN ERROR 8-18, 8-20
pageable map considerations 8-20
TRUNCATED 8-20

Map Image screen 1-26
map modification commands

ATTRIBUTES 17-5—17-9
MODIFY MAP 17-12—17-20

map paging session 17-23
map paging status condition 8-22

See also pageable maps
maps

See also Map Image screen
See also map modification commands
See also menu map
See also pageable maps
See also screens
conditional expressions 17-4
output data options 17-16
permanent modifications 17-7, 17-13
suppressing error message 17-17
temporary modifications 17-7, 17-13

mask character 7-32, 8-11, 16-67
master function table F-4, F-5
MATCHES condition 8-10
matching string 7-32
menu definition 4-8
menu function 1-9

See also function
menu maps

ADSOMSON 4-9
ADSOMUR1 4-9
ADSOMUR2 4-9
signon 4-13—4-16
site-defined 4-9
system-defined 4-10—4-13

menu stack 15-7

X-8 CA-ADS Reference

menu/dialog function 1-9
See also function

message codes 15-15
messages 15-15
modified data tags (MDTs)

resetting 17-14
setting for map fields 17-19

MODIFY command 16-53, 16-69
MODIFY MAP
MODIFY MAP command 8-20, 17-12
modules

See process modules
MODULO built-in function 7-35
MOVE command 13-12
multibit binary constants 9-7
multibit binary data type 5-13
multiple databases

accessing 11-6
MULTIPLY command 13-10

N
native VSAM data sets 16-7—16-9

currency requests 16-15
set status condition 16-8
with CONNECT 16-23
with DISCONNECT 16-26
with ERASE 16-27
with FIND/OBTAIN OWNER 16-38
with MODIFY 16-55

natural logarithm 7-34
navigational DML commands

ACCEPT 16-12
COMMIT 16-20
CONNECT 16-22
DISCONNECT 16-25
ERASE 16-27
FIND/OBTAIN 16-30
GET 16-44
KEEP 16-46
MODIFY 16-53
READY 16-55
RETURN DB-KEY 16-57
ROLLBACK 16-59
STORE 16-60

nesting 15-26
NEXT command 14-8
NEXT-INTEGER-EQUAL-HIGHER built-in

function 7-36
NEXT-INTEGER-EQUAL-OR-LOWER built-in

function 7-37

nonnumeric literals 9-8
NUMERIC built-in function 7-38
numeric fields 13-4
numeric literals 9-9

O
OBTAIN command 16-70
OCB

See online control block (OCB)
OCTL statement

ADSOBCOM D-4
ADSOBSYS D-37

OLQ
See CA-OLQ

ON command 16-71
online control block (OCB) 20-11
online debugger H-7—H-10
online help

in CA-ADS applications 4-8
in CA-ADS compilers 1-32

online terminal block (OTB) 20-11
online terminal block extension (OTBX) 20-11
online work area (OWA) 20-11
Options and Directives 3-13
OS/390 JCL

ADSOBCOM D-30
ADSOBSYS D-39
ADSOBTAT D-51
ADSORPTS B-25

OTB
See online terminal block (OTB)

OTBX
See online terminal block extension (OTBX)

OWA
See online work area (OWA)

P
packed decimal data type 5-13
pageable map commands

GET DETAIL 17-28
PUT DETAIL 17-30

pageable maps
$PAGE field 17-24
areas of 17-21
Auto display specification 3-19
Backpage specification 3-19
flow of control 17-25
map paging dialog options 3-18, 17-27—17-28
map paging session 17-22

Index X-9

pageable maps (continued)
severity codes 17-33
UPDATE specification 3-19

parameters for process commands
keywords 5-7
variable terms 5-7

path status (LRF) 16-72
PF keys

See application compiler
PL/I

See user program
POP function 1-9

See also system functions
POPTOP function 1-9

See also system functions
PREPARE-TO-RECEIVE command 21-19
printer output 17-15
process commands

See also commands
coding of 5-8
comment character 5-9
quoted strings 5-9

process modules
premap 5-5
response 5-5

processing
cooperative 21-3

program
See user program

program function 1-9
See also function
See also user program

protected usage mode 16-55
PUT DETAIL command 8-20, 17-30
PUT QUEUE command 18-12
PUT SCRATCH command 18-22

Q
queue management commands

DELETE QUEUE 18-7
GET QUEUE 18-9
PUT QUEUE 18-12

queue records 18-5
QUIT function 1-9

See also system functions
quoted strings

See process commands

R
RANDOM-NUMBER built-in function 7-40
RBB

See record buffer block (RBB)
RCDACT-059 record E-4—E-8
READ TRANSACTION command 15-30
READY command 16-55
RECEIVE-AND-WAIT command 21-20
record buffer block (RBB) 20-12
record locking

queue 18-5
record locks

deadlock conditions 16-10
exclusive 16-9
explicit 16-9
implicit 16-9
long-term explicit 16-9
release of 16-20
retrieval locks 16-10—16-12
shared 16-9

records
queue 18-5
scratch 18-15

recovery 16-59
releases

explicit 1-28
implicit 1-29

releasing entities 1-29
remainder values 7-35
REPEAT command-statement 14-10
repeat string 7-50
REPLACE built-in function 7-42
replace string 7-42
reports

See ADSORPTS
See AREPORTs

REQUEST-TO-SEND command 21-21
REQUEST-TO-SEND-RECEIVED system field 21-30,

21-34
reset keyboard 17-14
response 1-9

runtime selection 4-9
Response Definition screen (ADSA) 2-23
response process

security 3-29
Response/Function List screen 2-19
Response/Function List screen (ADSA) 2-19
Response/Function search 2-22
responses

runtime selection 4-16

X-10 CA-ADS Reference

responses (continued)
security 4-20

RETURN command 15-31
status test outcome 8-14

RETURN DB-KEY command 16-57
RETURN function 1-9

See also system functions
RHDCEVBF source module F-28
RIGHT-JUSTIFY built-in function 7-44
ROLLBACK command 16-59
run units 4-25

extended 4-25—4-27
usage modes 4-26

runtime system
ADSOMAIN 4-3
ADSORUN1 4-3
initiation of 4-3—4-7

S
scratch area 18-15
scratch management commands

DELETE SCRATCH 18-17
GET SCRATCH 18-19
PUT SCRATCH 18-22

scratch records 18-15
screens

See also application compiler
See also dialog compiler
See also maps
application compiler 2-11
Dialog Abort Information screen 4-28—4-31
Dialog Selection screen 4-4
Dialog Summary Report screen 1-26
Dialog Summary screen 1-26
Function Definition (Dialog) screen 2-27
Function Definition (Menu) screen 2-32
Function Definition (Program) 2-30
General Options—Page 1 (ADSA) 2-14—2-16
General Options—Page 2 (ADSA) 2-16—2-19
Global Records 2-37
help 4-16—4-18
Map Image screen 1-26
Menu definition 4-8
Options and Directives (ADSC) 3-13
Response Definition 2-23
Response/Function List 2-19
Response/Function List screen 2-19
screens 3-10
task codes 2-39
TAT Update Utility D-58

SEARCH statement B-22
search, Response/Function 2-22
security

See also application security
ADAPGOP2 2-17
ADSOBCOM D-4
General Options screen—Page 2 2-16—2-19
response G-5
response process 3-29
security-tailored menus G-6
signon G-6—G-7

SEND-DATA command 21-22
SEND-ERROR command 21-24
SEND/RECEIVE commands 21-3

summary 21-9
SET condition 8-25
set membership options 16-22
SETACT-061 record E-4—E-6
sign inversion 7-30
SIGN-VALUE built-in function 7-45
SIGNOFF function 1-9, G-7

See also system functions
SIGNON function 1-9, G-6

See also system functions
SIGNON statement (ADSOBCOM) D-5
sine values 7-46
SNA (Systems Network Architecture) 21-3
SNAP command 20-11
sort key 16-42
sorted set 16-42
source code

See process modules
source module

See process modules
SQL

access module 3-21
compliance 3-22

SQL comment character 5-9
SQUARE-ROOT 7-47
SREPORTs C-12
SSA-024 area E-4
SSOR-034 set E-4
SSR-032 record E-4
statistics

See dialog statistics
status codes 21-31
status definition record

ADSO-STAT-DEF-REC 10-9
level-88 condition names 10-9
site defined 10-10
STATUS clause 10-9

Index X-11

status definition record (continued)
system defined 10-9

step mode 2-16
storage

management 4-40
XA 4-40

STORE command 16-60, 16-75
string built-in functions

CONCATENATE 7-15
EXTRACT 7-23
FIX 7-24
INDEX 7-48
INITCAP 7-27
INSERT 7-28
LEFT-JUSTIFY 7-31
LIKE 7-32
REPLACE 7-42
RIGHT-JUSTIFY 7-44
STRING-INDEX 7-48
STRING-LENGTH 7-49
STRING-REPEAT 7-50
SUBSTRING 7-51
TOLOWER 7-55
TOUPPER 7-57
TRANSLATE 7-59
VERIFY 7-61
WORDCAP 7-65

string verification 7-61
STRING-LENGTH built-in function 7-49
STRING-REPEAT built-in function 7-50
subroutine control commands

CALL 19-4
DEFINE 19-5
GOBACK 19-6

Subschema Control Block 16-20
SUBSCHEMA-CONTROL 15-25
SUBSTRING built-in function 7-51
SUBTRACT command 13-11
suspense file 15-37
symbol table 3-15
SYSIDMS parameters

for physical requirements B-24
system fields 21-30, 21-34
system functions 1-9

See also function
BACKWARD 1-9, A-13
FORWARD 1-9, A-13
HELP 1-9, 4-16
POP 1-9
POPTOP 1-9
QUIT 1-9

system functions (continued)
RETURN 1-9
SIGNOFF 1-9, G-7
SIGNON 1-9, G-6
TOP 1-9

system records
See ADSO-APPLICATION-GLOBAL-RECORD
See ADSO-APPLICATION-MENU-RECORD
See ADSO-STAT-DEF-REC

SYSTEM statement (ADSOBSYS) D-38
system-supplied data fields 11-6

$ERROR-COUNT 11-9
$INPUT-COUNT 11-9
$OUTPUT-COUNT 11-9
CURSOR-COLUMN 11-8
CURSOR-ROW 11-8
DATE 11-8
DB-NAME 11-6
DIRECT-DBKEY 11-6
ERROR-STATUS 11-8
LENGTH 11-8
NODE-NAME 11-6
TIME 11-9

T
tables

diagnostic 3-15
symbol 3-15

task 4-24
task application table (TAT) 2-39, 4-4, 20-12

See also ADSOBTAT
See also ADSOTATU

task code, for TCF 2-4
Task Codes screen (ADSA) 2-39
TAT

See task application table (TAT)
TAT Update Utility D-58
TCF

See transfer control facility
test condition

See conditional expressions
test conditions

WHERE clause 16-65
THEN command-statement 14-5
TODAY built-in function 7-54
TOLOWER built-in function 7-55
TOMORROW built-in function 7-56
TOP function 1-9

See also system functions

X-12 CA-ADS Reference

TOUPPER built-in function 7-57
TRACE 20-13, H-6
trace facility H-5—H-6
trailing sign built-in functions

GOODTRAILING 7-26
TRAILING-TO-ZONED 7-58
ZONED-TO-TRAILING 7-67

TRAILING-TO-ZONED built-in function 7-58
transaction statistics

See dialog statistics
TRANSFER command 15-34

status test outcome 8-14
transfer control facility 2-4, 3-4—3-5
TRANSLATE built-in function 7-59
trigonometric built-in functions

ARCCOSINE-DEGREES 7-12
ARCCOSINE-RADIANS 7-12
ARCSINE-DEGREES 7-13
ARCSINE-RADIANS 7-13
ARCTAN-DEGREES 7-14
ARCTAN-RADIANS 7-14
COSINE-DEGREES 7-16
COSINE-RADIANS 7-16
SINE-DEGREES 7-46
SINE-RADIANS 7-46

TRUNCATED condition 8-20

U
usage modes 4-26

exclusive 16-56
protected 16-56
retrieval 16-55
shared 16-56
update 16-55

user program
DC RETURN statement 15-27
linking 15-26

user program function
See program function

utilities
ADSOBCOM D-4—D-29, D-36
ADSOBSYS D-37—D-48
ADSOBTAT D-48—D-56
ADSORPTS B-3—B-30
ADSOTATU D-57—D-59

utility commands
ABORT 20-4
ACCEPT 20-8
INITIALIZE RECORDS 20-10
SNAP 20-11

utility commands (continued)
TRACE 20-13
WRITE PRINTER command 20-14

V
variable dialog block (VDB) 20-12
variable expression description element

See VXDE module
variable terms

types of 5-8
variables

arithmetic expressions 6-3—6-6
conditional expressions 8-3
constants 9-3
data fields 11-3
entity names 11-12
error expressions 10-6
system-supplied 11-6
target fields 11-10
 user-defined 11-4
variable target fields 11-10

VDB
See variable dialog block (VDB)

VDE module
processing of F-17

vector call codes B-11
VERIFY built-in function 7-61
VM/ESA commands

ADSOBCOM D-33
ADSOBSYS D-44
ADSOBTAT D-54
ADSORPTS B-27

VM/ESA systems
See VM/ESA commands

VSAM data sets
See native VSAM data sets

VSE/ESA JCL
ADSOBCOM D-31
ADSOBSYS D-42
ADSOBTAT D-52
ADSORPTS B-26

VXDE module F-4, F-8—F-17
processing of F-17

W
WEEKDAY built-in function 7-62
WHAT-RECEIVED system field 21-30, 21-34
WHERE clause 16-65

comparison expression 16-66

Index X-13

WHERE clause (continued)
conditional expression 16-65
test condition 16-66

WHILE command 14-10
with FIND/OBTAIN DB-KEY 16-36
WORDCAP built-in function 7-65
WRITE PRINTER command
WRITE TO LOG/OPERATOR
WRITE TO LOG/OPERATOR command 20-18
WRITE TRANSACTION command 15-36

X
XDE module F-4, F-6, F-8—F-17

Y
YESTERDAY built-in function 7-66

Z
zoned decimal data type 5-13
ZONED-TO-TRAILING built-in function 7-67

X-14 CA-ADS Reference

	CA-ADS Reference
	Contents
	How to Use This Manual
	What this manual is about
	Related documentation
	Understanding Syntax Diagrams
	Sample Syntax Diagram

	Volume 2. CA- ADS Reference
	Chapter 15. Control Commands
	15.1 Overview
	15.2 General considerations
	15.2.1 Application thread
	15.2.2 Operative and nonoperative dialogs
	15.2.3 Application levels
	15.2.4 Mainline dialog
	15.2.5 The menu stack
	15.2.6 Database currencies

	15.3 CONTINUE
	15.4 DISPLAY
	15.5 EXECUTE NEXT FUNCTION
	15.6 INVOKE
	15.7 LEAVE
	15.8 LINK
	15.9 READ TRANSACTION
	15.10 RETURN
	15.11 TRANSFER
	15.12 WRITE TRANSACTION

	Chapter 16. Database Access Commands
	16.1 Overview
	16.2 Navigational DML
	16.2.1 Overview of navigational database access
	16.2.2 Use of native VSAM data sets
	16.2.3 Record locking
	16.2.4 Suppression of record retrieval locks
	16.2.5 Overview of ACCEPT
	16.2.6 ACCEPT DB- KEY FROM CURRENCY
	16.2.7 ACCEPT DB- KEY RELATIVE TO CURRENCY
	16.2.8 ACCEPT PAGE- INFO
	16.2.9 ACCEPT STATISTICS
	16.2.10 BIND PROCEDURE
	16.2.11 COMMIT
	16.2.12 CONNECT
	16.2.13 DISCONNECT
	16.2.14 ERASE
	16.2.15 Overview of FIND/ OBTAIN
	16.2.16 FIND/ OBTAIN CALC
	16.2.17 FIND/ OBTAIN CURRENT
	16.2.18 FIND/ OBTAIN DB- KEY
	16.2.19 FIND/ OBTAIN OWNER
	16.2.20 FIND/ OBTAIN WITHIN SET/ AREA
	16.2.21 FIND/ OBTAIN WITHIN SET USING SORT KEY
	16.2.22 GET
	16.2.23 KEEP
	16.2.24 KEEP LONGTERM
	16.2.25 MODIFY
	16.2.26 READY
	16.2.27 RETURN DB- KEY
	16.2.28 ROLLBACK
	16.2.29 STORE

	16.3 Logical Record Facility commands
	16.3.1 Overview of LRF database access
	16.3.2 WHERE clause
	16.3.3 Conditional expression
	16.3.4 Comparison expression
	16.3.5 ERASE
	16.3.6 MODIFY
	16.3.7 OBTAIN
	16.3.8 ON command
	16.3.9 STORE

	Chapter 17. Map Commands
	17.1 Overview
	17.2 Map modification commands
	17.3 Attributes Command
	17.4 CLOSE
	17.5 MODIFY MAP
	17.6 Pageable maps
	17.6.1 Areas of a pageable map
	17.6.2 Map paging session
	17.6.3 Map paging dialog options
	17.6.4 GET DETAIL
	17.6.5 PUT DETAIL
	17.6.6 Creating or modifying a detail occurrence of a pageable map
	17.6.7 Specifying a numeric value associated with an occurrence
	17.6.8 Specifying a message to appear in the message field of an occurrence

	Chapter 18. Queue and Scratch Management Commands
	18.1 Overview
	18.2 Queue records
	18.3 DELETE QUEUE
	18.4 GET QUEUE
	18.5 PUT QUEUE
	18.6 Scratch records
	18.6.1 CA- ADS usage
	18.6.2 CA- ADS/ Batch considerations

	18.7 DELETE SCRATCH
	18.8 GET SCRATCH
	18.9 PUT SCRATCH

	Chapter 19. Subroutine Control Commands
	19.1 Overview
	19.2 CALL
	19.3 DEFINE
	19.4 GOBACK

	Chapter 20. Utility Commands
	20.1 Overview
	20.2 ABORT
	20.3 ACCEPT
	20.4 INITIALIZE RECORDS
	20.5 SNAP
	20.6 TRACE
	20.7 WRITE PRINTER
	20.8 WRITE TO LOG/ OPERATOR

	Chapter 21. Cooperative Processing Commands
	21.1 Using SEND/ RECEIVE commands
	21.1.1 How cooperative processing works

	21.2 Sample cooperative application
	21.2.1 Program A: Client listing (PC)
	21.2.2 Dialog B: Server listing (Mainframe)

	21.3 SEND/ RECEIVE commands
	21.4 ALLOCATE
	21.5 CONFIRM
	21.6 CONFIRMED
	21.7 CONTROL SESSION
	21.8 DEALLOCATE
	21.9 PREPARE- TO- RECEIVE
	21.10 RECEIVE- AND- WAIT
	21.11 REQUEST- TO- SEND
	21.12 SEND- DATA
	21.13 SEND- ERROR
	21.14 Design guidelines
	21.15 Understanding conversation states
	21.15.1 Conversation states in a successful data transfer

	21.16 Testing APPC status codes and system fields
	21.16.1 Status codes
	21.16.2 System fields
	21.16.3 When APPC status codes and system field values are returned
	21.16.4 APPCCODE and APPCERC
	21.16.5 System fields

	Chapter 22. OSCaR Commands
	22.1 OSCaR command syntax
	22.1.1 OPEN
	22.1.2 SEND
	22.1.3 CLOSE
	22.1.4 RECEIVE

	22.2 Sample OSCaR application
	22.3 OSCaR to APPC Mapping

	Appendix A. System Records
	A. 1 Overview
	A. 2 ADSO- APPLICATION- GLOBAL- RECORD
	A. 3 ADSO- APPLICATION- MENU- RECORD

	Appendix B. CA- ADS Dialog and Application Reporter
	B. 1 Overview
	B. 2 Dialog reports
	B. 3 Application reports
	B. 4 Control statements
	B. 4.1 APPLICATIONS
	B. 4.2 DIALOGS
	B. 4.3 LIST
	B. 4.4 SEARCH

	B. 5 SYSIDMS parameter file
	B. 6 JCL and commands to run reports

	Appendix C. Dialog Statistics
	C. 1 Overview
	C. 2 Collecting selected statistics
	C. 3 Enabling dialog statistics
	C. 4 Selecting dialogs
	C. 5 Setting a checkpoint interval
	C. 6 Collecting and writing statistics
	C. 7 Statistics reporting

	Appendix D. Application and Dialog Utilities
	D. 1 Overview
	D. 2 ADSOBCOM
	D. 2.1 Standard control statements
	D. 2.2 Special control statements
	D. 2.3 SIGNON
	D. 2.4 COMPILE
	D. 2.5 DECOMPILE
	D. 2.6 Dialog- expression
	D. 2.7 JCL and commands
	D. 2.7.1 OS/ 390 JCL
	D. 2.7.2 VSE/ ESA JCL
	D. 2.7.3 VM/ ESA commands
	D. 2.7.4 BS2000/ OSD JCL

	D. 3 ADSOBSYS
	D. 3.1 Control statements
	D. 3.2 SYSTEM statement
	D. 3.3 JCL and commands
	D. 3.3.1 OS/ 390 JCL
	D. 3.3.2 VSE/ ESA JCL
	D. 3.3.3 VM/ ESA commands
	D. 3.3.4 BS2000/ OSD JCL

	D. 4 ADSOBTAT
	D. 4.1 Control statements
	D. 4.2 JCL and commands
	D. 4.2.1 OS/ 390 JCL
	D. 4.2.2 VSE/ ESA JCL
	D. 4.2.3 VM/ ESA commands
	D. 4.2.4 BS2000/ OSD JCL

	D. 5 ADSOTATU
	D. 5.1 TAT update utility screen

	Appendix E. Activity Logging for a CA- ADS Dialog
	E. 1 Overview
	E. 2 Data dictionary organization
	E. 3 Activity logging record formats

	Appendix F. Built- in Function Support
	F. 1 Overview
	F. 2 Internal structure of built- in functions
	F. 2.1 Master function table
	F. 2.2 Model XDE module
	F. 2.3 XDEs and VXDEs
	F. 2.4 Processing program modules
	F. 2.5 Runtime processing of built- in functions

	F. 3 Assembler macros
	F. 3.1 # EFUNMST
	F. 3.2 RHDCEVBF
	F. 3.3 # EFUNMOD

	F. 4 Changing invocation names
	F. 5 Creating user- defined built- in functions
	F. 5.1 Steps for generating a user- defined built- in function
	F. 5.2 LRF considerations for user- defined built- in functions
	F. 5.3 Calling a user- defined built- in function

	Appendix G. Security Features
	G. 1 Overview
	G. 2 CA- ADS compiler security
	G. 3 CA- ADS application security
	G. 3.1 Response security
	G. 3.2 Signon security

	Appendix H. Debugging a CA- ADS Dialog
	H. 1 Creating a symbol table
	H. 2 Trace facility
	H. 3 Online debugger

	Index
	Special Characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

